Insular and anterior cingulate cortex deep stimulation for central neuropathic pain Disassembling the percept of pain

Carregando...
Imagem de Miniatura
Citações na Scopus
69
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Citação
NEUROLOGY, v.92, n.18, p.E2165-E2175, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective To compare the analgesic effects of stimulation of the anterior cingulate cortex (ACC) or the posterior superior insula (PSI) against sham deep (d) repetitive (r) transcranial magnetic stimulation (TMS) in patients with central neuropathic pain (CNP) after stroke or spinal cord injury in a randomized, double-blinded, sham-controlled, 3-arm parallel study. Methods Participants were randomly allocated into the active PSI-rTMS, ACC-rTMS, sham-PSI-rTMS, or sham-ACC-rTMS arms. Stimulations were performed for 12 weeks, and a comprehensive clinical and pain assessment, psychophysics, and cortical excitability measurements were performed at baseline and during treatment. The main outcome of the study was pain intensity (numeric rating scale [NRS]) after the last stimulation session. Results Ninety-eight patients (age 55.02 +/- 12.13 years) completed the study. NRS score was not significantly different between groups at the end of the study. Active rTMS treatments had no significant effects on pain interference with daily activities, pain dimensions, neuropathic pain symptoms, mood, medication use, cortical excitability measurements, or quality of life. Heat pain threshold was significantly increased after treatment in the PSI-dTMS group from baseline (1.58, 95% confidence interval [CI] 0.09-3.06]) compared to sham-dTMS (-1.02, 95% CI -2.10 to 0.04, p = 0.014), and ACC-dTMS caused a significant decrease in anxiety scores (-2.96, 95% CI -4.1 to -1.7]) compared to sham-dTMS (-0.78, 95% CI -1.9 to 0.3; p = 0.018). Conclusions ACC- and PSI-dTMS were not different from sham-dTMS for pain relief in CNP despite a significant antinociceptive effect after insular stimulation and anxiolytic effects of ACC-dTMS. These results showed that the different dimensions of pain can be modulated in humans noninvasively by directly stimulating deeper SNC cortical structures without necessarily affecting clinical pain per se.
Palavras-chave
Referências
  1. Afif A, 2008, PAIN, V138, P546, DOI 10.1016/j.pain.2008.02.004
  2. Allaire JCJ, RMARKDOWN DYNAMIC DO
  3. Andre-Obadia N, 2008, NEUROLOGY, V71, P833, DOI 10.1212/01.wnl.0000325481.61471.f0
  4. Attal N, 2002, NEUROLOGY, V58, P554, DOI 10.1212/WNL.58.4.554
  5. Attal N, 2016, PAIN, V157, P1224, DOI 10.1097/j.pain.0000000000000510
  6. de Oliveira RAA, 2012, BMC NEUROL, V12, DOI 10.1186/1471-2377-12-89
  7. Barrera-Chacon JM, 2011, SPINAL CORD, V49, P36, DOI 10.1038/sc.2010.101
  8. Barthas F, 2015, BIOL PSYCHIAT, V77, P236, DOI 10.1016/j.biopsych.2014.08.004
  9. Benison AM, 2011, J NEUROSCI, V31, P6317, DOI 10.1523/JNEUROSCI.0076-11.2011
  10. Boneschi FM, 2008, MULT SCLER, V14, P514, DOI 10.1177/1352458507085551
  11. Carmi L, 2018, BRAIN STIMUL, V11, P158, DOI 10.1016/j.brs.2017.09.004
  12. de Andrade DC, 2012, NEUROPHYSIOL CLIN, V42, P363, DOI 10.1016/j.neucli.2012.08.003
  13. Cottam WJ, 2018, PAIN, V159, P929, DOI 10.1097/j.pain.0000000000001209
  14. Cruccu G, 2016, EUR J NEUROL, V23, P1489, DOI 10.1111/ene.13103
  15. Cueva AS, 2016, NEUROPHYSIOL CLIN, V46, P43, DOI 10.1016/j.neucli.2015.12.003
  16. Cury RG, 2016, PAIN, V157, P2758, DOI 10.1097/j.pain.0000000000000697
  17. de Andrade DC, 2011, HEALTH QUAL LIFE OUT, V9, DOI 10.1186/1477-7525-9-107
  18. Deng ZD, 2013, BRAIN STIMUL, V6, P1, DOI 10.1016/j.brs.2012.02.005
  19. Denis DJ, 2016, EUR J PAIN, V20, P800, DOI 10.1002/ejp.806
  20. Dimov LF, 2018, BEHAV BRAIN RES, V346, P86, DOI 10.1016/j.bbr.2017.11.036
  21. Dinur-Klein L, 2014, BIOL PSYCHIAT, V76, P742, DOI 10.1016/j.biopsych.2014.05.020
  22. Dum RP, 2009, J NEUROSCI, V29, P14223, DOI 10.1523/JNEUROSCI.3398-09.2009
  23. Falah M, 2012, EUR J PAIN, V16, P860, DOI 10.1002/j.1532-2149.2011.00073.x
  24. Finnerup NB, 2016, PAIN, V157, P1599, DOI 10.1097/j.pain.0000000000000492
  25. Fuchs PN, 2014, FRONT INTEGR NEUROSC, V8, DOI 10.3389/fnint.2014.00035
  26. Hosomi K, 2013, PAIN, V154, P1065, DOI 10.1016/j.pain.2013.03.016
  27. Jungehulsing GJ, 2013, EUR J NEUROL, V20, P331, DOI 10.1111/j.1468-1331.2012.03857.x
  28. Kim JS, 2011, PAIN, V152, P1018, DOI 10.1016/j.pain.2010.12.023
  29. Kranz G, 2010, NEUROLOGY, V75, P1465, DOI 10.1212/WNL.0b013e3181f8814d
  30. Langford RM, 2013, J NEUROL, V260, P984, DOI 10.1007/s00415-012-6739-4
  31. LEIJON G, 1989, PAIN, V36, P27, DOI 10.1016/0304-3959(89)90108-5
  32. Lenoir C, 2018, J PHYSIOL-LONDON, V596, P4767, DOI 10.1113/JP276359
  33. Levkovitz Y, 2015, WORLD PSYCHIATRY, V14, P64, DOI 10.1002/wps.20199
  34. Lieberman MD, 2015, P NATL ACAD SCI USA, V112, P15250, DOI 10.1073/pnas.1515083112
  35. Lorca-Puls DL, 2017, BRAIN, V140, P1729, DOI 10.1093/brain/awx087
  36. Menon V, 2010, BRAIN STRUCT FUNCT, V214, P655, DOI 10.1007/s00429-010-0262-0
  37. Mhalla A, 2011, PAIN, V152, P1478, DOI 10.1016/j.pain.2011.01.034
  38. Nasreddine ZS, 1997, NEUROLOGY, V48, P1196, DOI 10.1212/WNL.48.5.1196
  39. Nurmikko TJ, 2010, CURR PAIN HEADACHE R, V14, P189, DOI 10.1007/s11916-010-0108-8
  40. Peyron R, 2000, NEUROPHYSIOL CLIN, V30, P263, DOI 10.1016/S0987-7053(00)00227-6
  41. Ploghaus A, 1999, SCIENCE, V284, P1979, DOI 10.1126/science.284.5422.1979
  42. Richards JS, 2015, ARCH PHYS MED REHAB, V96, P680, DOI 10.1016/j.apmr.2014.11.024
  43. Rintala DH, 2010, AM J PHYS MED REHAB, V89, P840, DOI 10.1097/PHM.0b013e3181f1c4ec
  44. Siddall PJ, 2003, PAIN, V103, P249, DOI 10.1016/S0304-3959(02)00452-9
  45. Templ M, 2011, VIM VISUALIZATION IM
  46. Tzabazis A, 2013, MOL PAIN, V9, DOI 10.1186/1744-8069-9-33
  47. Vartiainen N, 2016, BRAIN, V139, P708, DOI 10.1093/brain/awv389
  48. Vollmer TL, 2014, PAIN PRACT, V14, P732, DOI 10.1111/papr.12127
  49. Vranken JH, 2011, PAIN, V152, P267, DOI 10.1016/j.pain.2010.09.005