Cathelicidin protects mice from Rhabdomyolysis-induced Acute Kidney Injury

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
IVYSPRING INT PUBL
Citação
INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, v.18, n.4, p.883-890, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Cathelicidins are ancient and well-conserved antimicrobial peptides (AMPs) with intriguing immunomodulatory properties in both infectious and non-infectious inflammatory diseases. In addition to direct antimicrobial activity, cathelicidins also participate in several signaling pathways inducing both pro-inflammatory and anti-inflammatory effects. Acute kidney injury (AKI) is common in critically ill patients and is associated with high mortality and morbidity. Rhabdomyolysis is a major trigger of AKI. Objectives: Here, we investigated the role of cathelicidins in non-infectious Acute kidney Injury (AKI). Method: Using an experimental model of rhabdomyolysis, we induced AKI in wild-type and cathelicidin-related AMP knockout (CRAMP(-/-)) mice. Results: We previously demonstrated that CRAMP(-/-) mice, as opposed wild-type mice, are protected from AKI during sepsis induced by cecal ligation and puncture. Conversely, in the current study, we show that CRAMP(-/-) mice are more susceptible to the rhabdomyolysis model of AKI. A more in-depth investigation of wild-type and CRAMP(-/-) mice revealed important differences in the levels of several inflammatory mediators. Conclusion: Cathelicidins can induce a varied and even opposing repertoire of immune-inflammatory responses depending on the subjacent disease and the cellular context.
Palavras-chave
antimicrobial peptide, cathelicidin, innate immunity, acute kidney injury, sepsis, rhabdomyolysis, inflammation
Referências
  1. Agarwal A, 2016, J AM SOC NEPHROL, V27, P1288, DOI 10.1681/ASN.2015070740
  2. Andrade-Oliveira V, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01192
  3. Antonucci Elio, 2014, Acta Biomed, V85, P289
  4. Becknell B, 2015, NAT REV NEPHROL, V11, P642, DOI 10.1038/nrneph.2015.105
  5. Bosch X, 2009, NEW ENGL J MED, V361, P62, DOI 10.1056/NEJMra0801327
  6. Chromek M, 2006, NAT MED, V12, P636, DOI 10.1038/nm1407
  7. Chromek M, 2015, PEDIATR NEPHROL, V30, P1225, DOI 10.1007/s00467-014-2895-3
  8. Chromek M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046476
  9. da Silva FP, 2012, PEPTIDES, V36, P308, DOI 10.1016/j.peptides.2012.05.014
  10. De Oliveira BD, 2019, NAT REV NEPHROL, V15, P599, DOI 10.1038/s41581-019-0184-x
  11. Ferreira D, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007567
  12. Gois PHF, 2016, FREE RADICAL BIO MED, V101, P176, DOI 10.1016/j.freeradbiomed.2016.10.012
  13. Gomez H, 2016, CURR OPIN CRIT CARE, V22, P546, DOI 10.1097/MCC.0000000000000356
  14. Heyman Samuel N, 2002, Curr Opin Crit Care, V8, P526, DOI 10.1097/00075198-200212000-00008
  15. Honore PM, 2015, ANN INTENSIVE CARE, V5, DOI 10.1186/s13613-015-0095-3
  16. Jang HR, 2015, NAT REV NEPHROL, V11, P88, DOI 10.1038/nrneph.2014.180
  17. Martensson J, 2016, CONTRIB NEPHROL, V187, P36, DOI 10.1159/000442363
  18. Ortiz A, 2015, EUR J PHARMACOL, V759, P205, DOI 10.1016/j.ejphar.2015.03.026
  19. Panizo N, 2015, KIDNEY BLOOD PRESS R, V40, P520, DOI 10.1159/000368528
  20. Peerapornratana S, 2019, KIDNEY INT, V96, P1083, DOI 10.1016/j.kint.2019.05.026
  21. Rabb H, 2016, J AM SOC NEPHROL, V27, P371, DOI 10.1681/ASN.2015030261
  22. Severino P, 2017, J MOL MED, V95, P995, DOI 10.1007/s00109-017-1555-z
  23. Umbro I, 2016, J INFECTION, V72, P131, DOI 10.1016/j.jinf.2015.11.008