Circumpapillary and macular vessel density assessment by optical coherence tomography angiography in eyes with temporal hemianopia from chiasmal compression. Correlation with retinal neural and visual field loss

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Citação
EYE, v.34, n.4, p.695-703, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims To compare the circumpapillary and macular vessel density (cpVD/mVD) of eyes with temporal visual field (VF) defect and band atrophy (BA) of the optic nerve and normal controls using OCTA and to verify the association of VD parameters with circumpapillary retinal nerve fibre layer (cpRNFL) thickness, macular ganglion cell complex (mGCC) thickness and VF loss. Methods Thirty-three eyes of 26 patients with BA and 42 eyes of 22 age-matched normal controls underwent OCT + OCTA scanning. cpVD and cpRNFL were expressed as average and sector measurements. mVD and mGCC were calculated as averages and in quadrants and hemiretinas. VF loss was estimated using the 24-2 and the 10-2 protocols. Generalized estimated equation models were used for comparisons and area under the receiver operating characteristics (AROC) were calculated. Results Compared with controls, BA eyes displayed smaller average cpVD and mVD values (p < 0.001 and AROC = 0.91 for both). Sectorial measurements were also reduced, especially the nasotemporal sector average cpVD (p < 0.001 and AROC = 0.96) and the nasal retina mVD measurements (p < 0.001 and AROC = 0.93). cpVD and mVD correlated strongly with corresponding cpRNFL and mGCC thickness measurements in affected regions (r range: 0.67-0.78 and 0.56-0.76, respectively). Similarly, cpVD and mVD parameters correlated significantly with corresponding VF loss (r range: 0.45-0.68). Conclusions cpVD and mVD are significantly reduced in BA eyes compared with controls and are strongly correlated with retinal neural and VF loss. cpVD and mVD reduction on OCTA could serve as a surrogate for retinal neural loss in compressive optic neuropathy and might be useful in its management.
Palavras-chave
Referências
  1. Akashi A, 2014, INVEST OPHTH VIS SCI, V55, P4667, DOI 10.1167/iovs.14-14766
  2. Akil H, 2018, BRIT J OPHTHALMOL, V102, P515, DOI 10.1136/bjophthalmol-2016-309816
  3. Akil H, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170476
  4. Attwell D, 2010, NATURE, V468, P232, DOI 10.1038/nature09613
  5. Balducci N, 2017, MITOCHONDRION, V36, P60, DOI 10.1016/j.mito.2017.03.002
  6. Blanch RJ, 2018, PITUITARY, V21, P515, DOI 10.1007/s11102-018-0906-2
  7. Chen HSL, 2017, INVEST OPHTH VIS SCI, V58, P3637, DOI 10.1167/iovs.17-21846
  8. Costello F, 2017, NEUROL CLIN, V35, P153, DOI 10.1016/j.ncl.2016.08.012
  9. Cunha LP, 2008, DOC OPHTHALMOL, V117, P223, DOI 10.1007/s10633-008-9126-9
  10. Danesh-Meyer HV, 2015, J CLIN NEUROSCI, V22, P1098, DOI 10.1016/j.jocn.2015.02.001
  11. DELONG ER, 1988, BIOMETRICS, V44, P837, DOI 10.2307/2531595
  12. Garway-Heath DF, 2000, OPHTHALMOLOGY, V107, P1809, DOI 10.1016/S0161-6420(00)00284-0
  13. Hood DC, 2007, PROG RETIN EYE RES, V26, P688, DOI 10.1016/j.preteyeres.2007.08.001
  14. Hood DC, 2013, PROG RETIN EYE RES, V32, P1, DOI 10.1016/j.preteyeres.2012.08.003
  15. Huang YH, 2019, BRIT J OPHTHALMOL, V103, P789, DOI 10.1136/bjophthalmol-2018-312231
  16. Kashani AH, 2017, PROG RETIN EYE RES, V60, P66, DOI 10.1016/j.preteyeres.2017.07.002
  17. KIRYU J, 1995, INVEST OPHTH VIS SCI, V36, P1240
  18. Moghimi S, 2018, OPHTHALMOLOGY, V125, P1720, DOI 10.1016/j.ophtha.2018.05.006
  19. Monteiro MLR, 2010, EYE, V24, P1382, DOI 10.1038/eye.2010.48
  20. Monteiro MLR, 2014, INVEST OPHTH VIS SCI, V55, P3328, DOI 10.1167/iovs.14-14118
  21. Parrozzani Raffaele, 2018, Ophthalmol Retina, V2, P827, DOI 10.1016/j.oret.2017.12.001
  22. Sakaguchi K, 2017, INVEST OPHTH VIS SCI, V58, P5251, DOI 10.1167/iovs.17-21955
  23. Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
  24. Tieger MG, 2017, J NEURO-OPHTHALMOL, V37, P7, DOI 10.1097/WNO.0000000000000424
  25. Tobe LA, 2015, BRIT J OPHTHALMOL, V99, P609, DOI 10.1136/bjophthalmol-2014-305780
  26. Triolo G, 2017, INVEST OPHTH VIS SCI, V58, P5705, DOI 10.1167/iovs.17-22865
  27. UNSOLD R, 1980, ARCH OPHTHALMOL-CHIC, V98, P1637, DOI 10.1001/archopht.1980.01020040489020
  28. Wan KH, 2018, JAMA OPHTHALMOL, V136, P866, DOI 10.1001/jamaophthalmol.2018.1627
  29. Wang XG, 2014, BRIT J OPHTHALMOL, V98, P1368, DOI 10.1136/bjophthalmol-2013-304547
  30. Yarmohammadi A, 2016, OPHTHALMOLOGY, V123, P2498, DOI 10.1016/j.ophtha.2016.08.041
  31. Yarmohammadi A, 2016, INVEST OPHTH VIS SCI, V57, pOCT451, DOI 10.1167/iovs.15-18944
  32. Yum HR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153064