High-Resolution Magic-Angle-Spinning NMR in Revealing Hepatoblastoma Hallmarks

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
TASIC, Ljubica
AVRAMOVIC, Natasa
JADRANIN, Milka
QUINTERO, Melissa
STANISIC, Danijela
MARTINS, Lucas G. G.
COSTA, Tassia Brena Barroso Carneiro
RIVAS, Maria
Citação
BIOMEDICINES, v.10, n.12, article ID 3091, 11p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cancer is one of the leading causes of death in children and adolescents worldwide; among the types of liver cancer, hepatoblastoma (HBL) is the most common in childhood. Although it affects only two to three individuals in a million, it is mostly asymptomatic at diagnosis, so by the time it is detected it has already advanced. There are specific recommendations regarding HBL treatment, and ongoing studies to stratify the risks of HBL, understand the pathology, and predict prognostics and survival rates. Although magnetic resonance imaging spectroscopy is frequently used in diagnostics of HBL, high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy of HBL tissues is scarce. Using this technique, we studied the alterations among tissue metabolites of ex vivo samples from (a) HBL and non-cancer liver tissues (NCL), (b) HBL and adjacent non-tumor samples, and (c) two regions of the same HBL samples, one more centralized and the other at the edge of the tumor. It was possible to identify metabolites in HBL, then metabolites from the HBL center and the border samples, and link them to altered metabolisms in tumor tissues, highlighting their potential as biochemical markers. Metabolites closely related to liver metabolisms such as some phospholipids, triacylglycerides, fatty acids, glucose, and amino acids showed differences between the tissues.
Palavras-chave
hepatoblastoma, liver metabolome, cancer NMR-metabolomics
Referências
  1. Abdelahamid S., 2018, J CANC THER, V9, P793, DOI [10.4236/jct.2018.910065, DOI 10.4236/JCT.2018.910065]
  2. Andrisic L, 2018, REDOX BIOL, V14, P47, DOI 10.1016/j.redox.2017.08.009
  3. Aronson DC, 2016, SEMIN PEDIATR SURG, V25, P265, DOI 10.1053/j.sempedsurg.2016.09.002
  4. Baenke F, 2013, DIS MODEL MECH, V6, P1353, DOI 10.1242/dmm.011338
  5. Butler LM, 2020, ADV DRUG DELIVER REV, V159, P245, DOI 10.1016/j.addr.2020.07.013
  6. Cadoret A, 2002, ONCOGENE, V21, P8293, DOI 10.1038/sj.onc.1206118
  7. Cairo S, 2008, CANCER CELL, V14, P471, DOI 10.1016/j.ccr.2008.11.002
  8. Chen HT, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.690641
  9. Crippa S, 2017, EMBO MOL MED, V9, P1589, DOI 10.15252/emmm.201707814
  10. Currie E, 2013, CELL METAB, V18, P153, DOI 10.1016/j.cmet.2013.05.017
  11. Eichenmuller M, 2014, J HEPATOL, V61, P1312, DOI [10.1016/j.jhep.2014.08.009, 10.1016/j.jhep.2014.09.016]
  12. Emwas AH, 2019, METABOLITES, V9, DOI 10.3390/metabo9070123
  13. Escobar MQ, 2019, BIOMOLECULES, V9, DOI 10.3390/biom9120843
  14. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  15. Johnson CH, 2016, NAT REV MOL CELL BIO, V17, P451, DOI 10.1038/nrm.2016.25
  16. Kalish JM, 2017, CLIN CANCER RES, V23, pE115, DOI 10.1158/1078-0432.CCR-17-0710
  17. Koch A, 1999, CANCER RES, V59, P269
  18. Le Guennec A, 2014, ANAL CHEM, V86, P5946, DOI 10.1021/ac500966e
  19. Lopez-Terrada D, 2009, HUM PATHOL, V40, P783, DOI 10.1016/j.humpath.2008.07.022
  20. Luo XJ, 2017, MOL CANCER, V16, DOI 10.1186/s12943-017-0646-3
  21. Marchese S, 2018, TOXINS, V10, DOI 10.3390/toxins10110436
  22. Meyers RL, 2017, LANCET ONCOL, V18, P122, DOI 10.1016/S1470-2045(16)30598-8
  23. Pontes JGM, 2017, ANAL METHODS-UK, V9, P1078, DOI [10.1039/c6ay03102a, 10.1039/C6AY03102A]
  24. Escobar MQ, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.506959
  25. Rivas Maria Prates, 2020, Tumour Biol, V42, p1010428320977124, DOI 10.1177/1010428320977124
  26. Schmidt A, 2021, J CANCER RES CLIN, V147, P3169, DOI 10.1007/s00432-021-03713-4
  27. Shen G, 2020, ITAL J PEDIATR, V46, DOI 10.1186/s13052-020-00877-6
  28. Stanisic D., 2022, TOOLS TRENDS BIOANAL, P203, DOI [10.1007/978-3-030-82381-8_9, DOI 10.1007/978-3-030-82381-8_9]
  29. Stephenson DJ, 2017, TRANSL RES, V189, P13, DOI 10.1016/j.trsl.2017.06.006
  30. Sumazin P, 2017, HEPATOLOGY, V65, P104, DOI 10.1002/hep.28888
  31. Takis PG, 2019, TRAC-TREND ANAL CHEM, V120, DOI 10.1016/j.trac.2018.10.036
  32. Ulrich EL, 2008, NUCLEIC ACIDS RES, V36, pD402, DOI 10.1093/nar/gkm957
  33. Wang J, 2020, INT J BIOCHEM CELL B, V125, DOI 10.1016/j.biocel.2020.105773
  34. Warburg O, 1927, J GEN PHYSIOL, V8, P519, DOI 10.1085/jgp.8.6.519
  35. Wishart DS, 2016, NAT REV DRUG DISCOV, V15, P473, DOI 10.1038/nrd.2016.32
  36. Wishart DS, 2009, NUCLEIC ACIDS RES, V37, pD603, DOI 10.1093/nar/gkn810