Tibial and fibular nerves evaluation using intraoperative electromyography in rats

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACTA CIRURGICA BRASILEIRA
Citação
ACTA CIRURGICA BRASILEIRA, v.31, n.8, p.542-548, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
PURPOSE: To evaluate a new model of intraoperative electromyographic (EMG) assessment of the tibial and fibular nerves, and its respectives motor units in rats. METHODS: Eight Wistar rats underwent intraoperative EMG on both hind limbs at two different moments: week 0 and week 12. Supramaximal electrical stimulation applied on sciatic nerve, and compound muscle action potential recorded on the gastrocnemius muscle (GM) and the extensor digitorum longus muscle (EDLM) through electrodes at specifics points. Motor function assessment was performaced through Walking Track Test. RESULTS: Exposing the muscles and nerves for examination did not alter tibial (p=0.918) or fibular (p=0.877) function between the evaluation moments. Electromyography of the GM, innervated by the tibial nerve, revealed similar amplitude (p=0.069) and latency (p=0.256) at week 0 and at 12 weeks, creating a standard of normality. Meanwhile, electromyography of the EDLM, innervated by the fibular nerve, showed significant differences between the amplitudes (p=0.003) and latencies (p=0.021) at the two different moments of observation. CONCLUSION: Intraoperative electromyography determined and quantified gastrocnemius muscle motor unit integrity, innervated by tibial nerve. Although this study was not useful to, objectively, assess extensor digitorum longus muscle motor unit, innervated by fibular nerve.
Palavras-chave
Electromyography, Tibial Nerve, Peroneal Nerve, Rats, Wistar
Referências
  1. Aguiar J, 2014, J SMALL ANIM PRACT, V55, P635, DOI 10.1111/jsap.12033
  2. BAIN JR, 1989, PLAST RECONSTR SURG, V83, P129, DOI 10.1097/00006534-198901000-00024
  3. Belda E, 2014, VET J, V200, P170, DOI 10.1016/j.tvjl.2014.01.027
  4. Cardenas-Mejia A, 2015, J PLAST SURG HAND SU, V49, P183, DOI 10.3109/2000656X.2014.988218
  5. Damy SB, 2010, REV ASSOC MED BRAS, V56, P103, DOI 10.1590/S0104-42302010000100024
  6. Donaldson HH, 1924, MEMOIRS WISTAR I ANA, V6
  7. Egeland BM, 2010, PLAST RECONSTR SURG, V126, P1865, DOI 10.1097/PRS.0b013e3181f61848
  8. English AW, 2007, J NEUROPHYSIOL, V97, P1127, DOI 10.1152/jn.01035.2006
  9. ENGLISH AW, 1989, J PHYSIOL-LONDON, V416, P327
  10. Geuna S, 2015, J NEUROSCI METH, V243, P39, DOI 10.1016/j.jneumeth.2015.01.021
  11. Hayashi A, 2004, PLAST RECONSTR SURG, V114, P129, DOI 10.1097/01.PRS.0000129075.96217.92
  12. Kemp SWP, 2010, EUR J NEUROSCI, V31, P1074, DOI 10.1111/j.1460-9568.2010.07130.x
  13. MACKINNON SE, 1991, MUSCLE NERVE, V14, P1116, DOI 10.1002/mus.880141113
  14. MATTOX DE, 1987, AM J OTOL, V8, P43
  15. Reichert P, 2015, ANAT REC, V298, P444, DOI 10.1002/ar.23058
  16. Robinson AJ, 2001, ELETROFISIOLOGIA CLI
  17. Rupp A, 2007, J NEUROSCI METH, V166, P266, DOI 10.1016/j.jneumeth.2007.07.015
  18. Salomone R, 2013, MUSCLE NERVE, V48, P423, DOI 10.1002/mus.23768
  19. Salomone R, 2012, ANN OTO RHINOL LARYN, V121, P179
  20. Savastano LE, 2014, J NEUROSCI METH, V227, P166, DOI 10.1016/j.jneumeth.2014.01.020
  21. Scheibe PO, 2008, NUCL MED BIOL, V35, P3, DOI 10.1016/j.nucmedbio.2007.10.006
  22. Stipp-Brambilla EJ, 2010, ACTA FISIATR, V17, P109
  23. Tatlidede S, 2006, J RECONSTR MICROSURG, V22, P533, DOI 10.1055/s-2006-951319
  24. Van Soens I, 2010, J SMALL ANIM PRACT, V51, P275, DOI [10.1111/j.1748-5827.2009.00906.x, 10.1111/j.1748-5827.2010.00906.x]
  25. Wolthers M, 2005, MICROSURG, V25, P508, DOI 10.1002/micr.20156
  26. Wood MD, 2011, ANN ANAT, V193, P321, DOI 10.1016/j.aanat.2011.04.008