Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion

Carregando...
Imagem de Miniatura
Citações na Scopus
49
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
FREITAS, Vanessa M.
AMARAL, Jonatas Bussador do
SILVA, Thaiomara A.
SANTOS, Emerson S.
PINHEIRO, Joao de Jesus
JAEGER, Ruy G.
MACHADO-SANTELLI, Glaucia Maria
Citação
MOLECULAR CANCER, v.12, article ID 2, 15p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results: In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions: ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells.
Palavras-chave
ADAMTS-1, Breast cancer, Migration, Invasion, VEGF
Referências
  1. Artym VV, 2006, CANCER RES, V66, P3034, DOI 10.1158/0008-5472.CAN-05-2177
  2. Bowden ET, 2006, EXP CELL RES, V312, P1240, DOI 10.1016/j.yexcr.2005.12.012
  3. Brown HM, 2006, DEV BIOL, V300, P699, DOI 10.1016/j.ydbio.2006.10.012
  4. Buccione R, 2004, NAT REV MOL CELL BIO, V5, P647, DOI 10.1038/nrm1436
  5. Cabodi S, 2010, BREAST CANCER RES, V12, DOI 10.1186/bcr2563
  6. Chen CH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005052
  7. CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999
  8. Comoglio PM, 2005, NAT MED, V11, P1156, DOI 10.1038/nm1105-1156
  9. Entschladen F, 2004, LANCET ONCOL, V5, P254, DOI 10.1016/S1470-2045(04)01431-7
  10. Green CE, 2009, PLOS ONE, V4, P6713
  11. Hayot C, 2006, TOXICOL APPL PHARM, V211, P30, DOI 10.1016/j.taap.2005.06.006
  12. Iruela-Arispe ML, 2003, ANN NY ACAD SCI, V995, P183
  13. Kelly T, 1998, CLIN EXP METASTAS, V16, P501, DOI 10.1023/A:1006538200886
  14. Kleinman HK, 2003, CURR OPIN BIOTECH, V14, P526, DOI 10.1016/j.copbio.2003.08.002
  15. Kraljevic PS, 2011, MOL CANCER, V10, P22
  16. Krampert M, 2005, J BIOL CHEM, V280, P23844, DOI 10.1074/jbc.M412212200
  17. Kuno K, 2000, FEBS LETT, V478, P241, DOI 10.1016/S0014-5793(00)01854-8
  18. Kuno K, 1997, J BIOL CHEM, V272, P556
  19. Linder S, 2007, TRENDS CELL BIOL, V17, P107, DOI 10.1016/j.tcb.2007.01.002
  20. Liu YJ, 2006, ONCOGENE, V25, P2452, DOI 10.1038/sj.onc.1209287
  21. Lu X, 2009, GENE DEV, V23, P1882, DOI 10.1101/gad.1824809
  22. Lucas JT, 2010, ONCOGENE, V29, P4449, DOI 10.1038/onc.2010.185
  23. Luque A, 2003, J BIOL CHEM, V278, P23656, DOI 10.1074/jbc.M212964200
  24. Mader CC, 2011, CANCER RES, V71, P1730, DOI 10.1158/0008-5472.CAN-10-1432
  25. Masui T, 2001, CLIN CANCER RES, V7, P3437
  26. Nascimento CF, 2010, MICROSC RES TECHNIQ, V73, P99, DOI 10.1002/jemt.20761
  27. Ng YH, 2006, HUM REPROD, V21, P1990, DOI 10.1093/humrep/del108
  28. Oommen S, 2011, J BIOL CHEM, V286, P1083, DOI 10.1074/jbc.M110.175158
  29. Pantel K, 2004, NAT REV CANCER, V4, P448, DOI 10.1038/nrc1370
  30. Porter S, 2004, CLIN CANCER RES, V10, P2429, DOI 10.1158/1078-0432.CCR-0398-3
  31. Prager GW, 2010, MOL ONCOL, V4, P150, DOI 10.1016/j.molonc.2010.01.002
  32. Rehn AP, 2007, BONE, V41, P231, DOI 10.1016/j.bone.2007.04.187
  33. Robker RL, 2000, P NATL ACAD SCI USA, V97, P4689, DOI 10.1073/pnas.080073497
  34. Rocks N, 2008, BIOCHIMIE, V90, P369, DOI 10.1016/j.biochi.2007.08.008
  35. Rocks N, 2008, CANCER RES, V68, P9541, DOI 10.1158/0008-5472.CAN-08-0548
  36. Shindo T, 2000, J CLIN INVEST, V105, P1345, DOI 10.1172/JCI8635
  37. Stylli SS, 2008, J CLIN NEUROSCI, V15, P725, DOI 10.1016/j.jocn.2008.03.003
  38. Zhu CS, 2011, INFLAMM RES, V60, P769, DOI 10.1007/s00011-011-0332-7