Urinary metabolic biomarkers of diet quality in European children are associated with metabolic health

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
eLIFE SCIENCES PUBL LTD
Autores
STRATAKIS, Nikos
SISKOS, Alexandros P.
PAPADOPOULOU, Eleni
NGUYEN, Anh N.
ZHAO, Yinqi
MARGETAKI, Katerina
LAU, Chung-Ho E.
COEN, Muireann
MAITRE, Lea
FERNANDEZ-BARRES, Silvia
Citação
ELIFE, v.11, article ID e71332, 20p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and can help understand metabolic alterations in response to diet quality. Here, we used H-1 NMR spectroscopy in a multicountry study in European children (1147 children from 6 different cohorts) and identified a common panel of 4 urinary metabolites (hippurate, N-methylnicotinic acid, urea, and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed food consumption and also had higher capacity in discriminating children's diet quality than that of established sociodemographic determinants. Further, we showed that the identified metabolite panel also reflected the associations of these diet quality indicators with C-peptide, a stable and accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables objective assessment of dietary patterns in European child populations, complementary to traditional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, this knowledge can provide mechanistic evidence of common biological pathways that characterize healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to metabolic disease.
Palavras-chave
metabolomics, NMR spectroscopy, mediterranean diet adherence, ultra-processed food intake, european children, Human
Referências
  1. Afshin A, 2019, LANCET, V393, P1958, DOI 10.1016/S0140-6736(19)30041-8
  2. Agier L, 2019, LANCET PLANET HEALTH, V3, pE81, DOI 10.1016/S2542-5196(19)30010-5
  3. Aira T, 2021, INT J BEHAV NUTR PHY, V18, DOI 10.1186/s12966-021-01130-x
  4. Almanza-Aguilera E, 2017, J NUTR BIOCHEM, V48, P36, DOI 10.1016/j.jnutbio.2017.06.001
  5. Aranceta J, 2003, EUR J CLIN NUTR, V57, pS40, DOI 10.1038/sj.ejcn.1601813
  6. Asghari G, 2016, J PEDIATR-US, V174, P178, DOI 10.1016/j.jpeds.2016.03.077
  7. Baker P, 2020, OBES REV, V21, DOI 10.1111/obr.13126
  8. Basagana X, 2018, INT J EPIDEMIOL, V47, P1343, DOI 10.1093/ije/dyy117
  9. Brosnan JT, 2006, J NUTR, V136, p207S, DOI 10.1093/jn/136.1.207S
  10. Buyken AE, 2006, J NUTR, V136, P1828, DOI 10.1093/jn/136.7.1828
  11. Ping-Delfos WLS, 2015, BRIT J NUTR, V113, P1741, DOI 10.1017/S0007114515001026
  12. Chatzi L, 2017, PEDIATR OBES, V12, P47, DOI 10.1111/ijpo.12191
  13. Chatzi L, 2017, INT J EPIDEMIOL, V46, P1392, DOI 10.1093/ije/dyx084
  14. Cole TJ, 2012, PEDIATR OBES, V7, P284, DOI 10.1111/j.2047-6310.2012.00064.x
  15. Collins C, 2019, P NUTR SOC, V78, P189, DOI 10.1017/S002966511900048X
  16. Edmands WMB, 2011, J PROTEOME RES, V10, P4513, DOI 10.1021/pr200326k
  17. Elizabeth L, 2020, NUTRIENTS, V12, DOI 10.3390/nu12071955
  18. Ellul S, 2019, BMJ OPEN, V9, P106, DOI 10.1136/bmjopen-2017-020900
  19. Fiorito LM, 2009, AM J CLIN NUTR, V90, P935, DOI 10.3945/ajcn.2009.27623
  20. Garcia-Perez I, 2020, NAT FOOD, V1, P355, DOI 10.1038/s43016-020-0092-z
  21. Garcia-Perez I, 2017, LANCET DIABETES ENDO, V5, P184, DOI 10.1016/S2213-8587(16)30419-3
  22. Gibson R, 2020, AM J CLIN NUTR, V111, P280, DOI 10.1093/ajcn/nqz293
  23. Grazuleviciene R, 2009, INT J ENV RES PUB HE, V6, P1282, DOI 10.3390/ijerph6031282
  24. Grosso G, 2020, EUR J PUBLIC HEALTH, V30, P19, DOI 10.1093/eurpub/ckaa034
  25. Guertin KA, 2014, AM J CLIN NUTR, V100, P208, DOI 10.3945/ajcn.113.078758
  26. Guxens M, 2012, INT J EPIDEMIOL, V41, P930, DOI 10.1093/ije/dyr054
  27. Harsha PSCS, 2018, GENES NUTR, V13, DOI 10.1186/s12263-018-0614-6
  28. Heude B, 2016, INT J EPIDEMIOL, V45, P353, DOI 10.1093/ije/dyv151
  29. Hope SV, 2016, DIABETIC MED, V33, P1554, DOI 10.1111/dme.13142
  30. Ioannidis JPA, 2018, JAMA-J AM MED ASSOC, V320, P969, DOI 10.1001/jama.2018.11025
  31. Jakes RW, 2004, INT J EPIDEMIOL, V33, P1382, DOI 10.1093/ije/dyh181
  32. Karatzi K, 2014, PUBLIC HEALTH NUTR, V17, P2790, DOI 10.1017/S1368980013003327
  33. Krupp D, 2012, J NUTR, V142, P1314, DOI 10.3945/jn.112.159319
  34. Kuhn S, 2019, PSYCHOL RES-PSYCH FO, V83, P1097, DOI 10.1007/s00426-017-0957-4
  35. Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05
  36. Lau CHE, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1190-8
  37. Ley SH, 2014, AM J CLIN NUTR, V99, P352, DOI 10.3945/ajcn.113.075663
  38. Lynch CJ, 2014, NAT REV ENDOCRINOL, V10, P723, DOI 10.1038/nrendo.2014.171
  39. Magnus P, 2016, INT J EPIDEMIOL, V45, P382, DOI 10.1093/ije/dyw029
  40. Maitre L, 2018, BMJ OPEN, V8, DOI 10.1136/bmjopen-2017-021311
  41. Maitre L, 2017, SCI REP-UK, V7, DOI 10.1038/srep46082
  42. Manios Y, 2010, EUR J CLIN NUTR, V64, P1399, DOI 10.1038/ejcn.2010.172
  43. Martinez J. A., 2016, Mediterranean diet: dietary guidelines and impact on health and disease, P121
  44. Martos-Moreno GA, 2017, INT J OBESITY, V41, P1473, DOI 10.1038/ijo.2017.137
  45. McKeown NM, 2018, DIABETOLOGIA, V61, P317, DOI 10.1007/s00125-017-4475-0
  46. Monteiro CA, 2013, OBES REV, V14, P21, DOI 10.1111/obr.12107
  47. Monteiro CA, 2019, PUBLIC HEALTH NUTR, V22, P936, DOI 10.1017/S1368980018003762
  48. Monteiro CA, 2018, PUBLIC HEALTH NUTR, V21, P18, DOI 10.1017/S1368980017001379
  49. Monteiro CA, 2018, PUBLIC HEALTH NUTR, V21, P5, DOI 10.1017/S1368980017000234
  50. Nie CX, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19040954
  51. O'Gorman A, 2017, P NUTR SOC, V76, P295, DOI 10.1017/S0029665116002974
  52. Patel N, 2012, J AM HEART ASSOC, V1, DOI 10.1161/JAHA.112.003152
  53. Patrick H, 2005, J AM COLL NUTR, V24, P83, DOI 10.1080/07315724.2005.10719448
  54. Pearson N, 2014, OBES REV, V15, P666, DOI 10.1111/obr.12188
  55. Perng W, 2017, J NUTR, V147, P1977, DOI 10.3945/jn.117.256669
  56. Playdon MC, 2016, AM J CLIN NUTR, V104, P776, DOI 10.3945/ajcn.116.135301
  57. POLONSKY KS, 1986, J CLIN INVEST, V77, P98, DOI 10.1172/JCI112308
  58. Posma JM, 2020, NAT FOOD, V1, DOI 10.1038/s43016-020-0093-y
  59. Rauschert S, 2017, ANN NUTR METAB, V70, P201, DOI 10.1159/000459635
  60. Rebholz CM, 2018, AM J CLIN NUTR, V108, P243, DOI 10.1093/ajcn/nqy099
  61. Romero-Polvo A, 2012, ANN NUTR METAB, V61, P142, DOI 10.1159/000341493
  62. Scaglioni S, 2018, NUTRIENTS, V10, DOI 10.3390/nu10060706
  63. Scalbert A, 2014, AM J CLIN NUTR, V99, P1286, DOI 10.3945/ajcn.113.076133
  64. Serra-Majem L, 2004, PUBLIC HEALTH NUTR, V7, P931, DOI 10.1079/PHN2004556
  65. Serrano-Sanchez JA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024453
  66. Srour B, 2020, JAMA INTERN MED, V180, P283, DOI 10.1001/jamainternmed.2019.5942
  67. Stanhope KL, 2013, CURR OPIN LIPIDOL, V24, P198, DOI 10.1097/MOL.0b013e3283613bca
  68. StataCorp, 2021, STAT MULT IMP REF MA
  69. Sunehag AL, 2002, J CLIN ENDOCR METAB, V87, P5168, DOI 10.1210/jc.2002-020674
  70. Vezzosi D, 2007, EUR J ENDOCRINOL, V157, P75, DOI 10.1530/EJE-07-0109
  71. WHO, 2003, WHO TECH REP SER, V916, P1
  72. WHO, 2015, GUID SUG INT AD CHIL
  73. Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1
  74. Wright J, 2013, INT J EPIDEMIOL, V42, P978, DOI 10.1093/ije/dys112
  75. Zhao X, 2016, J DIABETES RES, V2016, DOI 10.1155/2016/8160545