Novel Gadolinium-Free Ultrasmall Nanostructured Positive Contrast for Magnetic Resonance Angiography and Imaging

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER CHEMICAL SOC
Autores
KAWASSAKI, Rodrigo Ken
ROMANO, Mariana
UCHIYAMA, Mayara Klimuk
CARDOSO, Roberta Mansini
BAPTISTA, Mauriicio S.
FARSKY, Sandra H. P.
GUIMARAES, Robson Raphael
ARAKI, Koiti
Citação
NANO LETTERS, v.23, n.12, p.5497-5505, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Nanostructured contrast agents are promising alternativesto Gd3+-based chelates in magnetic resonance (MR) imagingtechniques.A novel ultrasmall paramagnetic nanoparticle (UPN) was strategicallydesigned to maximize the number of exposed paramagnetic sites and r (1) while minimizing r (2), by decorating 3 nm titanium dioxide nanoparticles with suitableamounts of iron oxide. Its relaxometric parameters are comparableto those of gadoteric acid (GA) in agar phantoms, and the r (2)/r (1) ratio of 1.38at 3 T is close to the ideal unitary value. The strong and prolongedcontrast enhancement of UPN before renal excretion was confirmed by T (1)-weighted MR images of Wistar rats after intravenousbolus injection. Those results associated with good biocompatibilityindicate its high potential as an alternative blood-pool contrastagent to the GA gold standard for MR angiography, especially for patientswith severe renal impairment.
Palavras-chave
ultrasmall nanoparticle, paramagnetic, contrastagent, MRI, iron oxide
Referências
  1. Adhipandito CF, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222011182
  2. Albanese A, 2011, ACS NANO, V5, P5478, DOI 10.1021/nn2007496
  3. Alkilany AM, 2016, CHEM RES TOXICOL, V29, P943, DOI 10.1021/acs.chemrestox.6b00108
  4. Bao Y, 2018, J MATER CHEM C, V6, P1280, DOI 10.1039/c7tc05854c
  5. Caspani S, 2020, MATERIALS, V13, DOI 10.3390/ma13112586
  6. Colbert CM, 2023, J MAGN RESON IMAGING, V57, P1819, DOI 10.1002/jmri.28457
  7. Deda Daiana K, 2021, J Nanosci Nanotechnol, V21, P1451, DOI 10.1166/jnn.2021.19027
  8. Deda DK, 2017, ANAL BIOANAL CHEM, V409, P6663, DOI 10.1007/s00216-017-0622-1
  9. Du BJ, 2018, NAT REV MATER, V3, P358, DOI 10.1038/s41578-018-0038-3
  10. Feng QY, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19628-z
  11. Ferretti AM, 2021, J COLLOID INTERF SCI, V582, P678, DOI 10.1016/j.jcis.2020.08.026
  12. Groult H, 2021, NANOSCALE, V13, P842, DOI 10.1039/d0nr06378a
  13. Hadjidemetriou M, 2017, NAT NANOTECHNOL, V12, P288, DOI 10.1038/nnano.2017.61
  14. Jeon M, 2021, ADV MATER, V33, DOI 10.1002/adma.201906539
  15. Jin RR, 2014, CURR OPIN PHARMACOL, V18, P18, DOI 10.1016/j.coph.2014.08.002
  16. Khandhar AP, 2018, J BIOMED MATER RES A, V106, P2440, DOI 10.1002/jbm.a.36438
  17. Kim BH, 2011, J AM CHEM SOC, V133, P12624, DOI 10.1021/ja203340u
  18. Nguyen KL, 2017, J CARDIOVASC MAGN R, V19, DOI 10.1186/s12968-017-0352-8
  19. Knobloch G, 2018, INVEST RADIOL, V53, P257, DOI 10.1097/RLI.0000000000000434
  20. Lankoff A, 2012, TOXICOL LETT, V208, P197, DOI 10.1016/j.toxlet.2011.11.006
  21. Layne KA, 2018, BRIT J CLIN PHARMACO, V84, P2522, DOI 10.1111/bcp.13718
  22. Li FY, 2019, NANO LETT, V19, P4213, DOI 10.1021/acs.nanolett.8b04411
  23. Ma D, 2017, J MATER CHEM B, V5, P7267, DOI 10.1039/c7tb01588g
  24. McDonald RJ, 2017, RADIOLOGY, V285, P546, DOI 10.1148/radiol.2017161595
  25. Merz V, 2019, SMALL, V15, DOI 10.1002/smll.201901551
  26. Moore TL, 2015, CHEM SOC REV, V44, P6287, DOI 10.1039/c4cs00487f
  27. Murphy CN, 2009, GLOB INST, P1
  28. Nguyen KL, 2019, RADIOLOGY, V293, P554, DOI 10.1148/radiol.2019190477
  29. Nosrati H, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43650-4
  30. Park EA, 2017, INVEST RADIOL, V52, P128, DOI 10.1097/RLI.0000000000000321
  31. Peng YK, 2016, MATER TODAY, V19, P336, DOI 10.1016/j.mattod.2015.11.006
  32. Plan Sangnier A, 2019, NANOSCALE, V11, P16488, DOI 10.1039/c9nr05624f
  33. Poon W, 2019, ACS NANO, V13, P5785, DOI 10.1021/acsnano.9b01383
  34. Pozzi D, 2015, NANOSCALE, V7, P13958, DOI 10.1039/c5nr03701h
  35. Rajkumar S, 2018, COLLOID SURFACE B, V170, P529, DOI 10.1016/j.colsurfb.2018.06.051
  36. Ramalho J, 2016, AM J NEURORADIOL, V37, P1192, DOI 10.3174/ajnr.A4615
  37. Rogosnitzky M, 2016, BIOMETALS, V29, P365, DOI 10.1007/s10534-016-9931-7
  38. Rohrer M, 2005, INVEST RADIOL, V40, P715, DOI 10.1097/01.rli.0000184756.66360.d3
  39. Schnorr A, 2004, INVEST RADIOL, V39, P546, DOI 10.1097/01.rli.0000133944.30119.cc
  40. Schottler S, 2016, NAT NANOTECHNOL, V11, P372, DOI [10.1038/NNANO.2015.330, 10.1038/nnano.2015.330]
  41. Shen ZY, 2017, ACS NANO, V11, P10992, DOI 10.1021/acsnano.7b04924
  42. Simon GH, 2006, EUR RADIOL, V16, P738, DOI 10.1007/s00330-005-0031-2
  43. Soufi GJ, 2022, ACS APPL NANO MATER, V5, P10151, DOI 10.1021/acsanm.2c03297
  44. Ta HT, 2017, MATER RES EXPRESS, V4, DOI 10.1088/2053-1591/aa96e3
  45. Tartaro A., 2015, REPORTS MED IMAGING, V8, P25, DOI [10.2147/rmi.s46798, DOI 10.2147/RMI.S46798]
  46. Thakral C, 2009, J CUTAN PATHOL, V36, P1244, DOI 10.1111/j.1600-0560.2009.01283.x
  47. Thapa B, 2018, ACS APPL BIO MATER, V1, P79, DOI 10.1021/acsabm.8b00016
  48. Toma SH, 2022, J PETROL SCI ENG, V212, DOI 10.1016/j.petrol.2022.110311
  49. Tromsdorf UI, 2009, NANO LETT, V9, P4434, DOI 10.1021/nl902715v
  50. Tsoi KM, 2016, NAT MATER, V15, P1212, DOI [10.1038/NMAT4718, 10.1038/nmat4718]
  51. Vangijzegem T, 2018, NANOTECHNOLOGY, V29, DOI 10.1088/1361-6528/aabbd0
  52. Wagner M, 2011, J MAGN RESON IMAGING, V34, P816, DOI 10.1002/jmri.22683
  53. Wang LY, 2017, ACS NANO, V11, P4582, DOI 10.1021/acsnano.7b00038
  54. Wei H, 2017, P NATL ACAD SCI USA, V114, P2325, DOI 10.1073/pnas.1620145114
  55. Weng QJ, 2019, ACS NANO, V13, P6801, DOI 10.1021/acsnano.9b01511
  56. Zook JM, 2011, NANOTOXICOLOGY, V5, P517, DOI 10.3109/17435390.2010.536615