Comparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteria

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorGAUDERETO, Juliana Januario
dc.contributor.authorPERDIGAO NETO, Lauro Vieira
dc.contributor.authorLEITE, Gleice Cristina
dc.contributor.authorSANCHEZ, Evelyn
dc.contributor.authorMARTINS, Roberta Cristina Ruedas
dc.contributor.authorPRADO, Gladys Villas Boas
dc.contributor.authorROSSI, Flavia
dc.contributor.authorGUIMARAES, Thais
dc.contributor.authorLEVIN, Anna Sara
dc.contributor.authorCOSTA, Silvia Figueiredo
dc.date.accessioned2020-06-01T14:53:05Z
dc.date.available2020-06-01T14:53:05Z
dc.date.issued2020
dc.description.abstractBackground The use of combined antibiotic therapy has become an option for infections caused by multidrug-resistant (MDR) bacteria. The time-kill (TK) assay is considered the gold standard method for the evaluation of in vitro synergy, but it is a time-consuming and expensive method. The purpose of this study was to evaluate two methods for testing in vitro antimicrobial combinations: the disk diffusion method through disk approximation (DA) and the agar gradient diffusion method via the MIC:MIC ratio. The TK assay was included as the gold standard. MDR Gram-negative clinical isolates (n = 62; 28 Pseudomonas aeruginosa, 20 Acinetobacter baumannii, and 14 Serratia marcescens) were submitted to TK, DA, and MIC:MIC ratio synergy methods. Results Overall, the agreement between the DA and TK assays ranged from 20 to 93%. The isolates of A. baumannii showed variable results of synergism according to TK, and the calculated agreement was statistically significant in this species against fosfomycin with meropenem including colistin-resistant isolates. The MIC:MIC ratiometric agreed from 35 to 71% with TK assays. The kappa test showed good agreement for the combination of colistin with amikacin (K = 0.58; P = 0.04) among the colistin-resistant A. baumannii isolates. Conclusions The DA and MIC:MIC ratiometric methods are easier to perform and might be a more viable tool for clinical microbiology laboratories.eng
dc.description.indexMEDLINEeng
dc.description.sponsorshipUniversity of Sao Paulo, Brazil
dc.description.sponsorshipNational Council of Technological and Scientific Development (CNPQ), BrazilNational Council for Scientific and Technological Development (CNPq)
dc.description.sponsorshipCNPQNational Council for Scientific and Technological Development (CNPq)
dc.identifier.citationBMC MICROBIOLOGY, v.20, n.1, article ID 97, 7p, 2020
dc.identifier.doi10.1186/s12866-020-01756-0
dc.identifier.issn1471-2180
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/35980
dc.language.isoeng
dc.publisherBMCeng
dc.relation.ispartofBMC Microbiology
dc.rightsopenAccesseng
dc.rights.holderCopyright BMCeng
dc.subjectSynergyeng
dc.subjectTime-killeng
dc.subjectDisk approximationeng
dc.subjectMICeng
dc.subjectMIC ratioeng
dc.subjectGram-negativeeng
dc.subjectMultidrug-resistanteng
dc.subject.otherklebsiella-pneumoniaeeng
dc.subject.otheracinetobacter-baumanniieng
dc.subject.otherpolymyxin-beng
dc.subject.othercolistin-resistanteng
dc.subject.otherpseudomonas-aeruginosaeng
dc.subject.otherantimicrobial agentseng
dc.subject.otherbeta-lactamaseseng
dc.subject.otherrapid detectioneng
dc.subject.otherdisk diffusioneng
dc.subject.othercombinationeng
dc.subject.wosMicrobiologyeng
dc.titleComparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteriaeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalLEITE, Gleice Cristina:Univ Sao Paulo, Fac Med, Inst Med Trop, Hosp Clin,LIM 49, Ave Doutor Eneas de Carvalho Aguiar 470, BR-05403000 Sao Paulo, SP, Brazil
hcfmusp.citation.scopus10
hcfmusp.contributor.author-fmusphcJULIANA JANUARIO GAUDERETO
hcfmusp.contributor.author-fmusphcLAURO VIEIRA PERDIGAO NETO
hcfmusp.contributor.author-fmusphcEVELYN PATRICIA SANCHEZ ESPINOZA
hcfmusp.contributor.author-fmusphcROBERTA CRISTINA RUEDAS MARTINS
hcfmusp.contributor.author-fmusphcGLADYS VILLAS BOAS DO PRADO MELO
hcfmusp.contributor.author-fmusphcFLAVIA ROSSI
hcfmusp.contributor.author-fmusphcTHAIS GUIMARAES
hcfmusp.contributor.author-fmusphcANNA SARA SHAFFERMAN LEVIN
hcfmusp.contributor.author-fmusphcSILVIA FIGUEIREDO COSTA
hcfmusp.description.articlenumber97
hcfmusp.description.issue1
hcfmusp.description.volume20
hcfmusp.origemWOS
hcfmusp.origem.pubmed32299353
hcfmusp.origem.scopus2-s2.0-85083632003
hcfmusp.origem.wosWOS:000528565300001
hcfmusp.publisher.cityLONDONeng
hcfmusp.publisher.countryENGLANDeng
hcfmusp.relation.referenceBae S, 2016, ANTIMICROB AGENTS CH, V60, P6774, DOI 10.1128/AAC.00839-16eng
hcfmusp.relation.referenceBradford PA, 2004, CLIN INFECT DIS, V39, P55, DOI 10.1086/421495eng
hcfmusp.relation.referenceBrennan-Krohn T, 2018, ANTIMICROB AGENTS CH, V62, DOI 10.1128/AAC.00873-18eng
hcfmusp.relation.referenceBrochmann RP, 2016, BMC VET RES, V12, DOI 10.1186/s12917-016-0751-3eng
hcfmusp.relation.referenceChachanidze V, 2009, INTERDISCIP PERSPECT, P984934eng
hcfmusp.relation.referenceClinical and Laboratory Standards Institute, 2018, M100S28 CLSIeng
hcfmusp.relation.referenceEUCAST, 2018, BREAKPOINT TABLES INeng
hcfmusp.relation.referenceEvren E, 2013, DIAGN MICR INFEC DIS, V76, P335, DOI 10.1016/j.diagmicrobio.2013.04.004eng
hcfmusp.relation.referenceFleiss J., 1981, STAT METHODS RATES Peng
hcfmusp.relation.referenceGaibani P, 2014, J ANTIMICROB CHEMOTH, V69, P1856, DOI 10.1093/jac/dku065eng
hcfmusp.relation.referenceGarcia-Salguero C, 2015, ANTIMICROB AGENTS CH, V59, P5959, DOI 10.1128/AAC.00873-15eng
hcfmusp.relation.referenceGiamarellou H, 2010, INT J ANTIMICROB AG, V36, pS50, DOI 10.1016/j.ijantimicag.2010.11.014eng
hcfmusp.relation.referenceChagas TPG, 2014, DIAGN MICR INFEC DIS, V79, P468, DOI 10.1016/j.diagmicrobio.2014.03.006eng
hcfmusp.relation.referenceHamidian M, 2019, MICROB GENOMICS, V5, DOI 10.1099/mgen.0.000306eng
hcfmusp.relation.referenceLarsen MV, 2012, J CLIN MICROBIOL, V50, P1355, DOI 10.1128/JCM.06094-11eng
hcfmusp.relation.referenceLeite GC, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151270eng
hcfmusp.relation.referenceLogan LK, 2017, J INFECT DIS, V215, pS28, DOI 10.1093/infdis/jiw282eng
hcfmusp.relation.referenceMendes RE, 2007, J CLIN MICROBIOL, V45, P544, DOI 10.1128/JCM.01728-06eng
hcfmusp.relation.referenceMontanari MP, 2005, DIAGN MICR INFEC DIS, V53, P157, DOI 10.1016/j.diagmicrobio.2005.06.002eng
hcfmusp.relation.referenceNastro M, 2014, J CHEMOTHERAPY, V26, P211, DOI 10.1179/1973947813Y.0000000136eng
hcfmusp.relation.referenceNi WT, 2015, INT J ANTIMICROB AG, V45, P8, DOI 10.1016/j.ijantimicag.2014.10.002eng
hcfmusp.relation.referenceOSTENSON RC, 1977, ANTIMICROB AGENTS CH, V12, P655, DOI 10.1128/AAC.12.6.655eng
hcfmusp.relation.referencePankey GA, 2005, ANTIMICROB AGENTS CH, V49, P2959, DOI 10.1128/AAC.49.7.2959-2964.2005eng
hcfmusp.relation.referencePankey GA, 2013, DIAGN MICR INFEC DIS, V77, P220, DOI 10.1016/j.diagmicrobio.2013.07.006eng
hcfmusp.relation.referencePankey GA, 2011, DIAGN MICR INFEC DIS, V70, P561, DOI 10.1016/j.diagmicrobio.2011.05.003eng
hcfmusp.relation.referencePankey GA, 2009, DIAGN MICR INFEC DIS, V63, P228, DOI 10.1016/j.diagmicrobio.2008.11.002eng
hcfmusp.relation.referenceNeto LVP, 2019, J ANTIMICROB CHEMOTH, V74, P177, DOI 10.1093/jac/dky406eng
hcfmusp.relation.referencePetersen PJ, 2006, J ANTIMICROB CHEMOTH, V57, P573, DOI 10.1093/jac/dki477eng
hcfmusp.relation.referencePillai SK, 2005, ANTIBIOTICS LAB MED, V5, P365eng
hcfmusp.relation.referenceRossi F, 2009, J MED MICROBIOL, V58, P1522, DOI 10.1099/jmm.0.011080-0eng
hcfmusp.relation.referenceSakoulas G, 2016, ANTIMICROB AGENTS CH, V60, P6609, DOI 10.1128/AAC.01192-16eng
hcfmusp.relation.referenceSamonis G, 2012, EUR J CLIN MICROBIOL, V31, P695, DOI 10.1007/s10096-011-1360-5eng
hcfmusp.relation.referenceSeemann T, 2014, BIOINFORMATICS, V30, P2068, DOI 10.1093/bioinformatics/btu153eng
hcfmusp.relation.referenceSharma R, 2017, INT J ANTIMICROB AG, V49, P224, DOI 10.1016/j.ijantimicag.2016.10.025eng
hcfmusp.relation.referenceSilva FM, 2011, MICROB DRUG RESIST, V17, P215, DOI 10.1089/mdr.2010.0140eng
hcfmusp.relation.referenceSingkham-in U, 2018, DIAGN MICR INFEC DIS, V91, P169, DOI 10.1016/j.diagmicrobio.2018.01.008eng
hcfmusp.relation.referenceSopirala MM, 2010, ANTIMICROB AGENTS CH, V54, P4678, DOI 10.1128/AAC.00497-10eng
hcfmusp.relation.referenceStein C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126479eng
hcfmusp.relation.referenceSy CL, 2016, J CLIN MICROBIOL, V54, P565, DOI 10.1128/JCM.01779-15eng
hcfmusp.relation.referenceTumbarello M, 2015, J ANTIMICROB CHEMOTH, V70, P2133, DOI 10.1093/jac/dkv086eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication6615f1e6-2111-4b3b-ad10-68383783d603
relation.isAuthorOfPublication2e223ce2-b8f3-47f6-b9f4-8bed1de4bc2b
relation.isAuthorOfPublicatione17bc16c-efed-4750-8b1f-c5a6f14c4012
relation.isAuthorOfPublicationa2dbb3e9-c20d-4e4d-806e-fbc7ef559e10
relation.isAuthorOfPublication1cc9101f-d2a9-48ea-bf41-59f9cf83fe6a
relation.isAuthorOfPublicationc23ed5c0-298e-4bc7-acfb-bcaa7ed9ea93
relation.isAuthorOfPublication89845747-0ae0-4fc1-b302-6f2af8790b08
relation.isAuthorOfPublicationd7322796-a00c-4603-a293-0f001b7d9649
relation.isAuthorOfPublicationd786dd7f-b93c-49e1-8561-c635a58c378f
relation.isAuthorOfPublication.latestForDiscovery6615f1e6-2111-4b3b-ad10-68383783d603
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_GAUDERETO_Comparison_of_methods_for_the_detection_of_in_2020.PDF
Tamanho:
321.93 KB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)