Plasma extracellular microRNAs are related to AIDS/cerebral toxoplasmosis co-infection

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
PEREIRA, Ingrid de Siqueira
MAIA, Marta Marques
CRUZ, Allecineia Bispo da
TELLES, Joao Paulo Marochi
GAVA, Ricardo
MEIRA-STREJEVITCH, Cristina Silva
PEREIRA-CHIOCCOLA, Vera Lucia
Citação
PARASITE IMMUNOLOGY, v.42, n.4, article ID e12696, 8p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study investigated the potential of five miRNA candidates for cerebral toxoplasmosis/HIV co-infection (CT/HIV) biomarkers. miR-155-5p, miR-146a-5p, miR-21-5p, miR-125b-5p and miR-29c-3p were tested in 79 plasma divided into groups: 32 CT/HIV patients; 27 individuals with asymptomatic toxoplasmosis (AT); and 20 individuals seronegative for toxoplasmosis (NC). From each was collected peripheral blood/EDTA for laboratory diagnosis. Blood cells for DNA extractions (molecular diagnosis), plasma for RNA extractions (gene expression) and ELISA (serological diagnosis). miRNA expression was performed by qPCR, and values were expressed in Relative Quantification (RQ). Among the five miRNAs, miR-21-5p and miR-146a-5p were up-expressed in CT/HIV group when compared with AT and NC groups. RQ means for miR-21-5p and miR-146a-5p in CT/HIV group were 3.829 and 2.500, while in AT group, were 1.815 and 1.661, respectively. Differences between 3 groups were statistically significant (Kruskal-Wallis ANOVA test), as well as CT/HIV and AT groups (Mann-Whitney test). Plasma of CT/HIV and AT groups expressed similar levels of miR-29c-3p, miR-155-5p and miR-125b-5p. As NC group was different of CT/HIV and AT groups, differences between three groups were statistically significant (Kruskal-Wallis ANOVA test). No difference was shown between CT/HIV and AT groups (Mann-Whitney test). These results suggest the host miRNAs modulation by Toxoplasma gondii.
Palavras-chave
cerebral toxoplasmosis, cytokine regulation, extracellular miRNA, gene expression
Referências
  1. Amado T, 2015, EUR J IMMUNOL, V45, P1584, DOI 10.1002/eji.201545487
  2. Angulo-Zamudio UA, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.02386
  3. Bartel DP, 2009, CELL, V136, P215, DOI 10.1016/j.cell.2009.01.002
  4. Butler NJ, 2013, CLIN EXP OPHTHALMOL, V41, P95, DOI 10.1111/j.1442-9071.2012.02838.x
  5. Cai Y, 2017, PARASITE IMMUNOL, V39, DOI 10.1111/pim.12417
  6. Camilo LM, 2017, BRAZ J INFECT DIS, V21, P638, DOI 10.1016/j.bjid.2017.07.003
  7. Cannella D, 2014, CELL REP, V6, P928, DOI 10.1016/j.celrep.2014.02.002
  8. Carruthers VB, 2007, SCHIZOPHRENIA BULL, V33, P745, DOI 10.1093/schbul/sbm008
  9. Chen X, 2012, PROTEIN CELL, V3, P28, DOI 10.1007/s13238-012-2003-z
  10. Cong W, 2017, ONCOTARGET, V8, P25599, DOI 10.18632/oncotarget.16108
  11. Correia CN, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00118
  12. da Costa-Silva TA, 2012, EXP PARASITOL, V130, P463, DOI 10.1016/j.exppara.2012.01.005
  13. Dai RJ, 2014, THER CLIN RISK MANAG, V10, P151, DOI 10.2147/TCRM.S33517
  14. Dubey JP, 2008, J EUKARYOT MICROBIOL, V55, P467, DOI 10.1111/j.1550-7408.2008.00345.x
  15. Escobar TM, 2014, IMMUNITY, V40, P865, DOI 10.1016/j.immuni.2014.03.014
  16. GAZZINELLI RT, 1993, INFECT AGENT DIS, V2, P139
  17. HANNUM C, 1984, IMMUNOL REV, V81, P161, DOI 10.1111/j.1600-065X.1984.tb01109.x
  18. Jiang JX, 2015, ONCOTARGET, V6, P2767, DOI 10.18632/oncotarget.3089
  19. Kanno Y, 2012, ANNU REV IMMUNOL, V30, P707, DOI 10.1146/annurev-immunol-020711-075058
  20. Li LH, 2018, BIOCHEM BIOPH RES CO, V495, P928, DOI 10.1016/j.bbrc.2017.09.137
  21. Li SY, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-019-3297-y
  22. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  23. Lu LF, 2010, CELL, V142, P914, DOI 10.1016/j.cell.2010.08.012
  24. Lu TX, 2011, J IMMUNOL, V187, P3362, DOI 10.4049/jimmunol.1101235
  25. Luft, 2000, Curr Infect Dis Rep, V2, P358, DOI 10.1007/s11908-000-0016-x
  26. Maia MM, 2017, PARASITE IMMUNOL, V39, DOI 10.1111/pim.12462
  27. Manzano-Roman R, 2012, MOL BIOCHEM PARASIT, V186, P81, DOI 10.1016/j.molbiopara.2012.10.001
  28. Meira CD, 2015, J IMMUNOL METHODS, V426, P14, DOI 10.1016/j.jim.2015.07.005
  29. Meira CS, 2008, J MED MICROBIOL, V57, P845, DOI 10.1099/jmm.0.47687-0
  30. Meira CS, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00492
  31. Meira-Strejevitch CS, 2020, CYTOKINE, V127, DOI 10.1016/j.cyto.2020.154990
  32. Montoya JG, 2004, LANCET, V363, P1965, DOI 10.1016/S0140-6736(04)16412-X
  33. O'Connell RM, 2010, NAT REV IMMUNOL, V10, P111, DOI 10.1038/nri2708
  34. Oertli M, 2011, J IMMUNOL, V187, P3578, DOI 10.4049/jimmunol.1101772
  35. Pereira-Chioccola VL, 2009, FUTURE MICROBIOL, V4, P1363, DOI 10.2217/FMB.09.89
  36. Rodriguez A, 2007, SCIENCE, V316, P608, DOI 10.1126/science.1139253
  37. Saadatnia G, 2012, SCAND J INFECT DIS, V44, P805, DOI 10.3109/00365548.2012.693197
  38. Saba R, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00578
  39. Sarciron ME, 2000, SCAND J IMMUNOL, V52, P534, DOI 10.1046/j.1365-3083.2000.00817.x
  40. Schulze-Luehrmann J, 2006, IMMUNITY, V25, P701, DOI 10.1016/j.immuni.2006.10.010
  41. Sheedy FJ, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00019
  42. Slota JA, 2019, NON-CODING RNA, V5, DOI 10.3390/ncrna5020035
  43. Thai TH, 2007, SCIENCE, V316, P604, DOI 10.1126/science.1141229
  44. Vidal JE, 2013, BRAZ J INFECT DIS, V17, P379, DOI 10.1016/j.bjid.2012.10.030
  45. Wang ZQ, 2014, MED SCI MONITOR, V20, P1668, DOI 10.12659/MSM.892096
  46. Wei B, 2010, CELL MOL IMMUNOL, V7, P175, DOI 10.1038/cmi.2010.19
  47. Weiss LM, 2000, FRONT BIOSCI, V5, pD391, DOI 10.2741/Weiss
  48. Winter J, 2009, NAT CELL BIOL, V11, P228, DOI 10.1038/ncb0309-228
  49. Xia XH, 2019, DEV BIOL, V450, P90, DOI 10.1016/j.ydbio.2019.03.013
  50. Yang LL, 2012, J EXP MED, V209, P1655, DOI 10.1084/jem.20112218
  51. Yuan Y, 2016, CANCER CELL, V29, P711, DOI 10.1016/j.ccell.2016.04.001