Sodium Taurocholate Induced Severe Acute Pancreatitis in C57BL/6 Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
JOURNAL OF VISUALIZED EXPERIMENTS
Citação
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, n.172, article ID e61547, 10p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Biliary acute pancreatitis induction by sodium taurocholate infusion has been widely used by the scientific community due to the representation of the human clinical condition and reproduction of inflammatory events corresponding to the onset of clinical biliary pancreatitis. The severity of pancreatic damage can be assessed by measuring the concentration, speed, and volume of the infused bile acid. This study provides an updated checklist of the materials and methods used in the protocol reproduction and shows the main results from this acute pancreatitis (AP) model. Most of the previous publications have limited themselves to reproducing this model in rats. We have applied this method in mice, which provides additional advantages (i.e., the availability of an arsenal of reagents and antibodies for these animals along with the possibility of working with genetically modified strains of mice) that may be relevant to the study. For acute pancreatitis induction in mice, we present a systematic protocol, with a defined dose of 2.5% sodium taurocholate at an infusion speed 10 mu L/min for 3 min in C57BL/6 mice that reaches its maximal level of severity within 12 h of induction and highlight results with outcomes that validate the method. With practice and technique, the total estimated time, from the induction of anesthesia to the completion of the infusion, is 25 min per animal.
Palavras-chave
Referências
  1. [Anonymous], 2015, PANCREAS, V44
  2. Bogdanske J. J., 2010, SUTURING PRINCIPLES, V1st
  3. Botoi G, 2009, CHIRURGIA-BUCHAREST, V104, P431
  4. Ceranowicz P, 2015, POSTEP HIG MED DOSW, V69, P264, DOI 10.5604/17322693.1141101
  5. Fang DZ, 2020, INT IMMUNOPHARMACOL, V80, DOI 10.1016/j.intimp.2019.106151
  6. Feng C, 2015, EXP THER MED, V10, P2029, DOI 10.3892/etm.2015.2802
  7. Kui B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117588
  8. Lerch MM, 2013, GASTROENTEROLOGY, V144, P1180, DOI 10.1053/j.gastro.2012.12.043
  9. Lesina M, 2014, SEMIN IMMUNOL, V26, P80, DOI 10.1016/j.smim.2014.01.002
  10. Li D, 2015, GENET MOL RES, V14, P6635, DOI 10.4238/2015.June.18.6
  11. Li X, 2018, BMC GASTROENTEROL, V18, P1
  12. Liu DL, 2020, INT IMMUNOPHARMACOL, V80, DOI 10.1016/j.intimp.2019.106128
  13. Ma ZH, 2005, INFLAMM RES, V54, P522, DOI 10.1007/s00011-005-1388-z
  14. Mayerle J, 2013, **DROPPED REF**
  15. Nakamura K, 2018, BIOSCI MICROB FOOD H, V37, P1, DOI 10.12938/bmfh.17-011
  16. Perides G, 2010, NAT PROTOC, V5, P335, DOI 10.1038/nprot.2009.243
  17. Rao SA, 2017, INDIAN J CRIT CARE M, V21, P424, DOI 10.4103/ijccm.IJCCM_478_16
  18. Ray Avijit, 2010, J Vis Exp, DOI 10.3791/1488
  19. Rechreche H, 2020, INDIAN J EXP BIOL, V58, P297
  20. Roberts SE, 2013, ALIMENT PHARM THER, V38, P539, DOI 10.1111/apt.12408
  21. SCHMIDT J, 1992, ANN SURG, V215, P44, DOI 10.1097/00000658-199201000-00007
  22. Song Hyun Keun, 2017, Lab Anim Res, V33, P119, DOI 10.5625/lar.2017.33.2.119
  23. Souza LJ, 2010, PANCREAS, V39, P1180, DOI 10.1097/MPA.0b013e3181e664f2
  24. Tao LL, 2017, TRENDS IMMUNOL, V38, P181, DOI 10.1016/j.it.2016.12.007
  25. Vandamme TF, 2014, J PHARM BIOALLIED SC, V6, P2, DOI 10.4103/0975-7406.124301
  26. Venglovecz V, 2019, PANCREAPEDIA EXOCRIN
  27. Wan MH, 2012, HPB, V14, P73, DOI 10.1111/j.1477-2574.2011.00408.x
  28. Wang N, 2017, INT J MOL MED, V40, P427, DOI 10.3892/ijmm.2017.3012
  29. Wittel U. A., 2008, PANCREAS, V36, P9
  30. Xue J, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8158
  31. Yang XF, 2020, BIOMED PHARMACOTHER, V125, DOI 10.1016/j.biopha.2020.110024