Understanding the gut microbiota in cancer cachexia

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Citação
CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, v.26, n.5, p.482-489, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose of reviewCachexia is a complex, multifactorial syndrome primarily characterized by weight loss, muscle wasting, anorexia, and systemic inflammation. It is prevalent in cancer patients and is associated with a poor prognosis, including lower resistance to intervention toxicity, quality of life, and survival, compared to patients without the syndrome. The gut microbiota and its metabolites have been shown to influence host metabolism and immune response. Our article reviews the current evidence suggesting a role of gut microbiota in the development and progression of cachexia, while discussing the potential mechanisms involved. We also describe promising interventions targeting gut microbiota aiming to improve outcomes related to cachexia.Recent findingsDysbiosis, an imbalance in gut microbiota, has been associated with cancer cachexia through pathways involving muscle wasting, inflammation, and gut barrier dysfunction. Interventions targeting gut microbiota, such as probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have shown promising results in managing this syndrome in animal models. However, evidence in humans is currently limited.Mechanisms linking gut microbiota and cancer cachexia need to be further explored, and additional human research is necessary to evaluate the appropriate dosages, safety, and long-term outcomes of prebiotic and probiotic use in microbiota management for cancer cachexia.
Palavras-chave
cancer cachexia, gut microbiota, inflammation
Referências
  1. [Anonymous], 2023, EFF MS 20 GUT MICR R
  2. [Anonymous], 2023, MICR PANCR CANC CACH
  3. Bindels Laure B, 2018, Oncotarget, V9, P18224, DOI 10.18632/oncotarget.24804
  4. Bindels LB, 2016, ISME J, V10, P1456, DOI 10.1038/ismej.2015.209
  5. Bindels LB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131009
  6. Bindels LB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037971
  7. Boscaini S, 2022, MOL METAB, V57, DOI 10.1016/j.molmet.2021.101427
  8. Bridgeman SC, 2020, PHARMACOL RES, V160, DOI 10.1016/j.phrs.2020.105174
  9. Brown LR, 2022, CURR TREAT OPTION ON, V23, P1732, DOI 10.1007/s11864-022-01028-1
  10. Cao Scott, 2021, JCSM RAPID COMMUN, V4, P166, DOI 10.1002/RCO2.30
  11. Cardona D, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19105828
  12. Cortiula F, 2022, J CACHEXIA SARCOPENI, V13, P55, DOI 10.1002/jcsm.12900
  13. Dasgupta A, 2020, J EXP MED, V217, DOI 10.1084/jem.20190745
  14. de Clercq NC, 2021, CLIN CANCER RES, V27, P3784, DOI 10.1158/1078-0432.CCR-20-4918
  15. Fan Y, 2021, NAT REV MICROBIOL, V19, P55, DOI 10.1038/s41579-020-0433-9
  16. Fearon K, 2011, LANCET ONCOL, V12, P489, DOI 10.1016/S1470-2045(10)70218-7
  17. Feng LX, 2021, J CACHEXIA SARCOPENI, V12, P1553, DOI 10.1002/jcsm.12798
  18. Garcia JM, 2022, J CACHEXIA SARCOPENI, V13, P1418, DOI 10.1002/jcsm.12910
  19. Genton L, 2019, FRONT CELL INFECT MI, V9, DOI 10.3389/fcimb.2019.00305
  20. Ghosh S, 2021, CELL MOL GASTROENTER, V11, P1463, DOI 10.1016/j.jcmgh.2021.02.007
  21. Gibson GR, 2017, NAT REV GASTRO HEPAT, V14, P491, DOI 10.1038/nrgastro.2017.75
  22. Hakozaki T, 2022, CANCERS, V14, DOI 10.3390/cancers14215405
  23. Hill C, 2014, NAT REV GASTRO HEPAT, V11, P506, DOI 10.1038/nrgastro.2014.66
  24. Hocking L, 2023, ALIMENT PHARM THER, V57, P549, DOI 10.1111/apt.17309
  25. Hsu CF, 2021, J PHARMACOL SCI, V147, P376, DOI 10.1016/j.jphs.2021.09.003
  26. Jabes DL, 2020, J FUNGI, V6, DOI 10.3390/jof6040364
  27. Jackson KM, 2021, CURR OPIN CLIN NUTR, V24, P216, DOI 10.1097/MCO.0000000000000738
  28. Jain T, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.622064
  29. Jiang YJ, 2014, J INTERF CYTOK RES, V34, P518, DOI 10.1089/jir.2013.0020
  30. Lahiri S, 2019, SCI TRANSL MED, V11, DOI 10.1126/scitranslmed.aan5662
  31. Liu CR, 2021, J CACHEXIA SARCOPENI, V12, P1393, DOI 10.1002/jcsm.12784
  32. McGovern J, 2022, BRIT J CANCER, V127, P379, DOI 10.1038/s41416-022-01826-2
  33. Mielcarek M, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00127
  34. Miller SG, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010088
  35. Ni YQ, 2021, ISME J, V15, P3207, DOI 10.1038/s41396-021-00998-8
  36. Nikkhah A, 2023, J APPL MICROBIOL, V134, DOI 10.1093/jambio/lxac014
  37. Nishikawa H, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22168491
  38. Obermüller B, 2020, NUTRIENTS, V12, DOI 10.3390/nu12072029
  39. Panebianco C, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24031849
  40. Park EM, 2022, NAT MED, V28, P690, DOI 10.1038/s41591-022-01779-2
  41. Pellegrini C, 2023, LANCET GASTROENTEROL, V8, P66, DOI 10.1016/S2468-1253(22)00241-2
  42. Pötgens SA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30569-5
  43. Qiu YX, 2021, ANN MED, V53, P508, DOI 10.1080/07853890.2021.1900593
  44. Rohm M, 2019, EMBO REP, V20, DOI 10.15252/embr.201847258
  45. Sakakida T, 2022, CANCER SCI, V113, P1789, DOI 10.1111/cas.15306
  46. Swanson KS, 2020, NAT REV GASTRO HEPAT, V17, P687, DOI 10.1038/s41575-020-0344-2
  47. Talbert EE, 2022, TRENDS CANCER, V8, P397, DOI 10.1016/j.trecan.2022.01.004
  48. Ubachs J, 2021, J CACHEXIA SARCOPENI, V12, P2007, DOI 10.1002/jcsm.12804
  49. Varian BJ, 2016, ONCOTARGET, V7, P11803, DOI 10.18632/oncotarget.7730
  50. Zhang L, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.1047029
  51. Zhao MK, 2023, J CANCER RES CLIN, V149, P541, DOI 10.1007/s00432-022-04546-5
  52. Ziemons J, 2021, BEST PRACT RES CL EN, V35, DOI 10.1016/j.beem.2021.101508