Study protocol for a randomized controlled trial on the effect of the Diabetic Foot Guidance System (SOPeD) for the prevention and treatment of foot musculoskeletal dysfunctions in people with diabetic neuropathy: the FOotCAre (FOCA) trial I

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
TRIALS, v.21, n.1, article ID 73, 14p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background This study is part of a series of two clinical trials. Taking into account the various musculoskeletal alterations of the foot and ankle in people with diabetic peripheral neuropathy (DPN) and the need for self-care to avoid more serious dysfunctions and complications, a self-manageable exercise protocol that focuses on strengthening the foot muscles is presented as a potentially effective preventive method for foot and gait complications. The aim of this trial is to investigate the effect of a customized rehabilitation technology, the Diabetic Foot Guidance System (SOPeD), on DPN status, functional outcomes and gait biomechanics in people with DPN. Methods/design Footcare (FOCA) trial I is a randomized, controlled and parallel two-arm trial with blind assessment. A total of 62 patients with DPN will be allocated into either a control group (recommended foot care by international consensus with no foot exercises) or an intervention group (who will perform exercises through SOPeD at home three times a week for 12 weeks). The exercise program will be customized throughout its course by a perceived effort scale reported by the participant after completion of each exercise. The participants will be assessed at three different times (baseline, completion at 12 weeks, and follow-up at 24 weeks) for all outcomes. The primary outcomes will be DPN symptoms and severity classification. The secondary outcomes will be foot-ankle kinematics and kinetic and plantar pressure distribution during gait, tactile and vibration sensitivities, foot health and functionality, foot strength, and functional balance. Discussion As there is no evidence about the efficacy of rehabilitation technology in reducing DPN symptoms and severity or improving biomechanical, clinical, and functional outcomes for people with DPN, this research can contribute substantially to clarifying the therapeutic merits of software interventions. We hope that the use of our application for people with DPN complications will reduce or attenuate the deficits caused by DPN. This rehabilitation technology is freely available, and we intend to introduce it into the public health system in Brazil after demonstrating its effectiveness.
Palavras-chave
Diabetic foot, Preventive care, Foot-related exercises, Self-management, eHealth, Musculoskeletal function, Rehabilitation technology
Referências
  1. Akashi PMH, 2008, CLIN BIOMECH, V23, P584, DOI 10.1016/j.clinbiomech.2007.11.015
  2. Allet L, 2010, DIABETOLOGIA, V53, P458, DOI 10.1007/s00125-009-1592-4
  3. Altman DG, 1999, BRIT MED J, V319, P703, DOI 10.1136/bmj.319.7211.703
  4. Andersen H, 2004, DIABETES, V53, P1543, DOI 10.2337/diabetes.53.6.1543
  5. Bacarin TA, 2009, CLINICS, V64, P113, DOI 10.1590/S1807-59322009000200008
  6. Borries TM, 2019, DIABETES METAB SYND, V13, P1353, DOI 10.1016/j.dsx.2019.02.014
  7. Botega NJ, 1995, REV SAUDE PUBL, V29, P355, DOI 10.1590/S0034-89101995000500004
  8. Bus SA, 2016, DIABETES-METAB RES, V32, P16, DOI 10.1002/dmrr.2696
  9. Carson MC, 2001, J BIOMECH, V34, P1299, DOI 10.1016/S0021-9290(01)00101-4
  10. Caselli A, 2002, DIABETES CARE, V25, P1066, DOI 10.2337/diacare.25.6.1066
  11. Cerrahoglu L, 2016, J AM PODIAT MED ASSN, V106, P189, DOI 10.7547/14-095
  12. Chan AW, 2013, ANN INTERN MED, V158, P200, DOI 10.7326/0003-4819-158-3-201302050-00583
  13. Cheuy VA, 2013, CLIN BIOMECH, V28, P1055, DOI 10.1016/j.clinbiomech.2013.10.006
  14. DEMPSTER WT, 1967, AM J ANAT, V120, P33, DOI 10.1002/aja.1001200104
  15. Dijs HM, 2000, J AM PODIAT MED ASSN, V90, P126, DOI 10.7547/87507315-90-3-126
  16. DUNCAN PW, 1990, J GERONTOL, V45, pM192, DOI 10.1093/geronj/45.6.M192
  17. Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146
  18. Fayed EE, 2016, INT J PHARMTECH RES, V9, P151
  19. Fernando ME, 2016, BMC ENDOCR DISORD, V16, DOI 10.1186/s12902-016-0131-9
  20. Ferreira AFB, 2008, CLINICS, V63, P595, DOI 10.1590/S1807-59322008000500005
  21. Ferreira JSSP, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218560
  22. Ferreira JP, 2017, CLIN BIOMECH, V43, P67, DOI 10.1016/j.clinbiomech.2017.02.003
  23. Garber CE, 2011, MED SCI SPORT EXER, V43, P1334, DOI 10.1249/MSS.0b013e318213fefb
  24. Giacomozzi C, 2018, ANN I SUPER SANITA, V54, P284, DOI 10.4415/ANN_18_04_04
  25. Giacomozzi C, 2017, GAIT POSTURE, V53, P131, DOI 10.1016/j.gaitpost.2016.12.022
  26. Goldsmith JR, 2002, J AM PODIAT MED ASSN, V92, P483, DOI 10.7547/87507315-92-9-483
  27. Gomes AA, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0327-x
  28. Gomes AA, 2011, MUSCLE NERVE, V44, P258, DOI 10.1002/mus.22051
  29. Gordois A, 2003, DIABETES CARE, V26, P1790, DOI 10.2337/diacare.26.6.1790
  30. Hazari A, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3405-9
  31. Huijgen BCH, 2008, J TELEMED TELECARE, V14, P249, DOI 10.1258/jtt.2008.080104
  32. Kanchanasamut W, 2017, DIABET FOOT ANKLE, V8, DOI 10.1080/2000625X.2017.1287239
  33. King D, 2013, J ROY SOC MED, V106, P76, DOI 10.1177/0141076813480996
  34. Kruse RL, 2010, PHYS THER, V90, P1568, DOI 10.2522/ptj.20090362
  35. Mahieu R, 2016, DIABETES RES CLIN PR, V119, P83, DOI 10.1016/j.diabres.2016.07.007
  36. Martinelli Alessandra Rezende, 2013, Foot (Edinb), V23, P17, DOI 10.1016/j.foot.2012.11.001
  37. Melai T, 2013, J FOOT ANKLE RES, V6, DOI 10.1186/1757-1146-6-41
  38. Mickle KJ, 2008, CLIN BIOMECH, V23, P662, DOI [10.1016/j.clinbiomech.2008.03.025, DOI 10.1016/J.CLINBI0MECH.2008.03.025]
  39. Pedras S, 2018, J HEALTH PSYCHOL, V23, P1488, DOI 10.1177/1359105316656769
  40. Perkins BA, 2001, DIABETES CARE, V24, P250, DOI 10.2337/diacare.24.2.250
  41. Picon AP, 2012, CLINICS, V67, P151, DOI 10.6061/clinics/2012(02)10
  42. Pop-Busui R, 2017, DIABETES CARE, V40, P136, DOI 10.2337/dc16-2042
  43. Sacco ICN, 2014, J BIOMECH, V47, P2475, DOI 10.1016/j.jbiomech.2014.04.007
  44. Sacco ICN, 2003, CLIN BIOMECH, V18, P426, DOI 10.1016/S0268-0033(03)00043-3
  45. Sacco ICN, 2016, DIABETES-METAB RES, V32, P206, DOI 10.1002/dmrr.2737
  46. Sacco ICN, 2015, DIABETES TECHNOL THE, V17, P405, DOI 10.1089/dia.2014.0284
  47. Sacco ICN, 2010, BMC MUSCULOSKEL DIS, V11, DOI 10.1186/1471-2474-11-24
  48. Salsich GB, 2000, J ORTHOP SPORT PHYS, V30, P473, DOI 10.2519/jospt.2000.30.8.473
  49. Sartor CD, 2018, BRAZ J PHYS THER, V22, P222, DOI 10.1016/j.bjpt.2017.10.004
  50. Sartor CD, 2014, BMC MUSCULOSKEL DIS, V15, DOI 10.1186/1471-2474-15-137
  51. Savelberg HHCM, 2010, CLIN BIOMECH, V25, P468, DOI 10.1016/j.clinbiomech.2010.02.005
  52. Sawacha Z, 2012, GAIT POSTURE, V35, P101, DOI 10.1016/j.gaitpost.2011.08.016
  53. Sawacha Zimi, 2010, J Diabetes Sci Technol, V4, P1127
  54. Schulz KF, 2010, EPIDEMIOL BIOSTAT PU, V7, P325
  55. Sinacore DR, 2013, J FOOT ANKLE RES, V6, DOI 10.1186/1757-1146-6-11
  56. Stebbins J, 2006, GAIT POSTURE, V23, P401, DOI 10.1016/j.gaitpost.2005.03.002
  57. Suda EY, 2017, CLIN BIOMECH, V42, P38, DOI 10.1016/j.clinbiomech.2017.01.001
  58. Suda EY, 2018, MUSCLE NERVE, V57, P112, DOI 10.1002/mus.25627
  59. Suhl E, 2006, DIABETES SPECTR, V19, P234, DOI 10.2337/DIASPECT.19.4.234
  60. VEVES A, 1992, DIABETOLOGIA, V35, P660, DOI 10.1007/BF00400259
  61. Watari R, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-11
  62. Williams DSB, 2007, J APPL BIOMECH, V23, P251, DOI 10.1123/jab.23.4.251
  63. Wright CJ, 2011, GAIT POSTURE, V33, P108, DOI 10.1016/j.gaitpost.2010.10.084
  64. York RM, 2009, PM&R, V1, P434, DOI 10.1016/j.pmrj.2009.03.001
  65. Zhang XG, 2014, ARCH PHYS MED REHAB, V95, P832, DOI 10.1016/j.apmr.2014.01.003
  66. 2016, DIABETES CARE S1, V39, pS6