Cranial Fossa Development in Differing Subtypes of Crouzon Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
LU, Xiaona
FORTE, Antonio Jorge
STEINBACHER, Derek M.
ALPEROVICH, Michael
PERSING, John A.
Citação
JOURNAL OF CRANIOFACIAL SURGERY, v.31, n.3, p.673-677, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Based on an established classification system of Crouzon syndrome subtypes, detailed regional morphology and volume analysis may be useful, to clarify Crouzon cranial structure characteristics, and the interaction between suture fusion and gene regulated overall growth of the calvarium and basicranium. Methods: CT scans of 36 unoperated Crouzon syndrome patients and 56 controls were included and subgrouped as: type I. Bilateral coronal synostosis; type II. Sagittal synostosis; type III. Pansynostosis; type IV. Perpendicular combination synostosis. Results: Type I of Crouzon syndrome patients developed a slightly smaller posterior fossa (22%), and increased superior cranial volume (13%), which is the only subtype that develops a greater superior cranial volume. The effect of competing increased and decreased segmental volume is associated with a 24% enlargement of overall cranial volume (P = 0.321). In class III, the anterior fossa volume was increased by 31% (P = 0.007), while the volume of posterior fossa was decreased by 19% (P < 0.001). These resulted in a 7% (P = 0.046) reduction in the overall intracranial volume. Type II and type IV patients developed a trend toward anterior, middle, and posterior fossae, and entire cranial volume reduction. Conclusions: Pansynostosis is the most often form of associated craniosynostoses of Crouzon syndrome, however bilateral coronal synostosis may not dominate this form of Crouzon syndrome. The anterior, middle and posterior cranial fossae may have simultaneously reduced volume if the midline suture synostosis is involved. Individualized treatment planning for Crouzon syndrome patient, theoretically should include the patient's age and temporal associated maldevelopment suture sequence.
Palavras-chave
Classification, cranial fossa, Crouzon syndrome, intracranial volume, subtype
Referências
  1. Babler W J, 1982, Prog Clin Biol Res, V101, P333
  2. Bannink N, 2008, J CRANIOFAC SURG, V19, P121, DOI 10.1097/SCS.0b013e31815f4015
  3. Bauder Andrew R, 2015, Plast Reconstr Surg, V136, P52, DOI 10.1097/01.prs.0000472342.36900.c7
  4. Breakey RWF, 2018, PLAST RECONSTR SURG, V142, p708E, DOI 10.1097/PRS.0000000000004843
  5. BURDI AR, 1986, CLEFT PALATE J, V23, P28
  6. Cai C, 2008, 2008 INT C BIOM ENG
  7. Calandrelli R, 2016, CHILD NERV SYST, V32, P451, DOI 10.1007/s00381-015-2956-3
  8. Carinci F, APERT CROUZON SYNDRO, V162005
  9. Choi M, 2012, J CRANIOFAC SURG, V23, P455, DOI 10.1097/SCS.0b013e318240ff49
  10. CINALLI G, 1995, J NEUROSURG, V83, P575, DOI 10.3171/jns.1995.83.4.0575
  11. Graul-Neumann LM, 2017, MOL SYNDROMOL, V8, P93, DOI 10.1159/000455028
  12. Greene AK, 2008, PLAST RECONSTR SURG, V122, P853, DOI 10.1097/PRS.0b013e31817f45f0
  13. HOFFMAN HJ, 1976, CHILD BRAIN, V2, P167
  14. Hoyte D A, 1991, Neurosurg Clin N Am, V2, P515
  15. KREIBORG S, 1977, SCAND J DENT RES, V85, P175
  16. Kreiborg S, 1981, Scand J Plast Reconstr Surg Suppl, V18, P1
  17. Lajeunie E, 1999, CHILD NERV SYST, V15, P676, DOI 10.1007/s003810050457
  18. Lu X, 2019, PLAST RECONSTR SURG, V143, P1
  19. Lu X, 2020, J CRANIOFAC SURG
  20. Lu X, 2020, PLAST RECONSTR SURG
  21. Mathijssen IMJ, 1996, PLAST RECONSTR SURG, V98, P17, DOI 10.1097/00006534-199607000-00004
  22. MCCARTHY JG, 1995, PLAST RECONSTR SURG, V96, P284, DOI 10.1097/00006534-199508000-00005
  23. MOSS MELVIN L., 1959, ACTA ANAT, V37, P351
  24. MOSS ML, 1960, ANAT REC, V136, P457, DOI 10.1002/ar.1091360405
  25. Nowinski D, 2012, CHILD NERV SYST, V28, P1537, DOI 10.1007/s00381-012-1809-6
  26. Perrine SMM, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00369
  27. Persing J A, 1991, Neurosurg Clin N Am, V2, P655
  28. PERSING JA, 1991, PLAST RECONSTR SURG, V87, P1028, DOI 10.1097/00006534-199106000-00003
  29. POSNICK JC, 1993, PLAST RECONSTR SURG, V92, P1027, DOI 10.1097/00006534-199311000-00005
  30. Raposo-Amaral CE, 2015, J CRANIOFAC SURG, V26, P1940, DOI 10.1097/SCS.0000000000001949
  31. REARDON W, 1994, NAT GENET, V8, P98, DOI 10.1038/ng0994-98
  32. Rogers GF, 2015, CLEFT PALATE-CRAN J, V52, P751, DOI 10.1597/14-092
  33. RUTLAND P, 1995, NAT GENET, V9, P173, DOI 10.1038/ng0295-173
  34. Sculerati N, 1998, LARYNGOSCOPE, V108, P1806, DOI 10.1097/00005537-199812000-00008
  35. Serlo WS, 2011, CHILD NERV SYST, V27, P627, DOI 10.1007/s00381-010-1353-1
  36. Sgouros S, 2005, CHILD NERV SYST, V21, P861, DOI 10.1007/s00381-004-1112-2
  37. Sgouros S, 1999, J NEUROSURG, V91, P617, DOI 10.3171/jns.1999.91.4.0617
  38. SIDDIQI SN, 1995, NEUROSURGERY, V36, P703, DOI 10.1227/00006123-199504000-00010
  39. Trigylidas T, 2008, CHILD NERV SYST, V24, P329, DOI 10.1007/s00381-007-0432-4
  40. Wood BC, 2015, J NEUROSURG-PEDIATR, V16, P309, DOI 10.3171/2015.1.PEDS14464