Non-invasive insular stimulation for peripheral neuropathic pain: Influence of target or symptom?

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Citação
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, v.52, n.2, p.109-116, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: The posterior-superior insula (PSI) has been shown to be a safe and potentially effective target for neuromodulation in peripheral neuropathic pain (PNP) in humans and animal models. However, it remains unknown whether there is a measurable responder profile to PSI stimulation. Two factors were hypothesized to influence the response of repetitive transcranial magnetic stimulation (rTMS) of the PSI: differences in rTMS target (discrete subregions of the PSI) or PNP phenotype. Methods: This is a secondary analysis from a randomized, double-blind, sham-controlled, crossover trial assessing PSI-rTMS in PNP (N = 31, 5 days rTMS) (10.1016/j.neucli.2021.06.003). Active PSI-rTMS true responders (>50% pain reduction from baseline after active but not after sham series of treatment) were compared with not true responders, to determine whether they differed with respect to 1) rTMS neuro-navigational target coordinates, and/or 2) specific neuropathic pain symptom inventory (NPSI) clusters (pinpointed pain, evoked pain, and deep pain) at baseline. Results: Mean rTMS target coordinates did not differ between true (n = 45.1%) and not true responders (p = 0.436 for X, p = 0.120 for Y, and p = 0.116 for Z). The Euclidian distance between true and not true responders was 4.04 mm. When comparing differences in responders between NPSI clusters, no participant within the evoked pain cluster was a true responder (p = 0.024). Conclusion: Response to PSI-rTMS may depend on pain cluster subtype rather than on differences in targeting within the PSI.
Palavras-chave
Insula, Neuronavigation, Neuropathic pain, Peripheral neuropathy, Symptom profile, Transcranial magnetic stimulation
Referências
  1. Alonso-Matielo H, 2021, BRAIN RES, V1754, DOI 10.1016/j.brainres.2020.147237
  2. Andre-Obadia N, 2021, CLIN NEUROPHYSIOL, V132, P2702, DOI 10.1016/j.clinph.2021.05.022
  3. Attal N, 2008, PAIN, V138, P343, DOI 10.1016/j.pain.2008.01.006
  4. Attal N, 2021, BRAIN, V144, P3328, DOI 10.1093/brain/awab208
  5. Attal N, 2016, LANCET NEUROL, V15, P555, DOI 10.1016/S1474-4422(16)00017-X
  6. de Oliveira RAA, 2014, J PAIN, V15, P1271, DOI 10.1016/j.jpain.2014.09.009
  7. Baptista AF, 2019, PAIN REP, V4, DOI 10.1097/PR9.0000000000000692
  8. Barbosa L, 2021, BRAIN COMMUN
  9. Bouhassira D, 2004, PAIN, V108, P248, DOI 10.1016/j.pain.2003.12.024
  10. Bouhassira D, 2021, PAIN, V162, P1038, DOI 10.1097/j.pain.0000000000002130
  11. Chehade HD, 2021, NEUROMODULATION, V24, P229, DOI 10.1111/ner.13343
  12. de Andrade DC, 2012, NEUROPHYSIOL CLIN, V42, P363, DOI 10.1016/j.neucli.2012.08.003
  13. de Andrade DC, 2011, HEALTH QUAL LIFE OUT, V9, DOI 10.1186/1477-7525-9-107
  14. Delboni Lemos M, 2021, PAIN
  15. Denis DJ, 2016, EUR J PAIN, V20, P800, DOI 10.1002/ejp.806
  16. Dimov LF, 2018, BEHAV BRAIN RES, V346, P86, DOI 10.1016/j.bbr.2017.11.036
  17. Dongyang L, 2021, NEUROPHYSIOL CLIN, V51, P291, DOI 10.1016/j.neucli.2021.06.003
  18. Drouot X, 2002, BRAIN, V125, P1660, DOI 10.1093/brain/awf161
  19. Ducreux D, 2006, BRAIN, V129, P963, DOI 10.1093/brain/awl016
  20. Eickhoff SB, 2009, HUM BRAIN MAPP, V30, P2907, DOI 10.1002/hbm.20718
  21. EVANS AC, 1993, NUCLEAR SCIENCE SYMPOSIUM & MEDICAL IMAGING CONFERENCE, VOLS 1-3, P1813, DOI 10.1109/NSSMIC.1993.373602
  22. Faillenot I, 2017, NEUROIMAGE, V150, P88, DOI 10.1016/j.neuroimage.2017.01.073
  23. Forstenpointner J, 2021, PAIN, V162, P718, DOI 10.1097/j.pain.0000000000002058
  24. Galhardoni GR, 2019, NEUROLOGY, V92, pE2165, DOI 10.1212/WNL.0000000000007396
  25. Giannoni-Luza S, 2020, PAIN, V161, P1955, DOI 10.1097/j.pain.0000000000001893
  26. Hamani C, 2021, BRAIN, V144, P2994, DOI 10.1093/brain/awab189
  27. Hansson PT, 2009, EUR J PAIN, V13, P439, DOI 10.1016/j.ejpain.2009.02.008
  28. Lefaucheur JP, 2012, EUR J PAIN, V16, P1403, DOI 10.1002/j.1532-2149.2012.00150.x
  29. Lefaucheur JP, 2020, CLIN NEUROPHYSIOL, V131, P474, DOI 10.1016/j.clinph.2019.11.002
  30. Lenoir C, 2018, J PHYSIOL-LONDON, V596, P4767, DOI 10.1113/JP276359
  31. Mazzola L, 2009, PAIN, V146, P99, DOI 10.1016/j.pain.2009.07.014
  32. Moisset X, 2021, REV NEUROL-FRANCE, V177, P834, DOI 10.1016/j.neurol.2021.07.004
  33. Nuti C, 2005, PAIN, V118, P43, DOI 10.1016/j.pain.2005.07.020
  34. Peyron R, 2002, NEUROIMAGE, V17, P1336, DOI 10.1006/nimg.2002.1315
  35. Quesada C, 2018, ARCH PHYS MED REHAB, V99, P2203, DOI 10.1016/j.apmr.2018.04.013
  36. Valerio F, 2020, EUR J PAIN, V24, P1548, DOI 10.1002/ejp.1608
  37. Yoo BH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-57466-0
  38. Zhang XL, 2018, STEREOT FUNCT NEUROS, V96, P239, DOI 10.1159/000492056