Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation

Carregando...
Imagem de Miniatura
Citações na Scopus
45
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
JOURNAL OF NUTRITIONAL BIOCHEMISTRY, v.32, p.91-100, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Interesterified fats are currently being used to replace trans fatty acids. However, their impact on biological pathways involved in the atherosclerosis development was not investigated. Weaning male LDLr-KO mice were fed for 16 weeks on a high-fat diet (40% energy as fat) containing polyunsaturated (PUFA), TRANS, palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR) or stearic interesterified (STEAR INTER). Plasma lipids, lipoprotein profile, arterial lesion area, macrophage infiltration, collagen content and inflammatory response modulation were determined. Macrophage cholesterol efflux and the arterial expression of cholesterol uptake and efflux receptors were also performed. The interesterification process did not alter plasma lipid concentrations. Although PALM INTER did not increase plasma cholesterol concentration as much as TRANS, the cholesterol enrichment in the LDL particle was similar in both groups. Moreover, PALM INTER induced the highest IL-1 beta, MCP-1 and IL-6 secretion from peritoneal macrophages as compared to others. This inflammatory response elicited by PALM INTER was confirmed in arterial wall, as compared to PALM. These deleterious effects of PALM INTER culminate in higher atherosclerotic lesion, macrophage infiltration and collagen content than PALM, STEAR, STEAR INTER and PUFA. These events can partially be attributed to a macrophage cholesterol accumulation, promoted by apoAl and HDL2-mediated cholesterol efflux impairment and increased Olr-1 and decreased Abca1 and Nr1h3 expressions in the arterial wall. Interesterified fats containing palmitic acid induce atherosclerosis development by promoting cholesterol accumulation in LDL particles and macrophagic cells, activating the inflammatory process in LDLr-KO mice.
Palavras-chave
Atherosclerosis, Interesterified fat, Trans fat, Diet, Lipoprotein metabolism, Mice
Referências
  1. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  2. BENNETT AJ, 1995, BIOCHEM J, V311, P167
  3. Berry SEE, 2007, AM J CLIN NUTR, V85, P1486
  4. Berry SEE, 2009, NUTR RES REV, V22, P3, DOI 10.1017/S0954422409369267
  5. Berry SEE, 2007, LIPIDS, V42, P315, DOI 10.1007/s11745-007-3024-x
  6. Bjorkbacka H, 2004, NAT MED, V10, P416, DOI 10.1038/nm1008
  7. BONANOME A, 1988, NEW ENGL J MED, V318, P1244, DOI 10.1056/NEJM198805123181905
  8. Boring L, 1998, NATURE, V394, P894, DOI 10.1038/29788
  9. Dinarello CA, 2009, ANNU REV IMMUNOL, V27, P519, DOI 10.1146/annurev.immunol.021908.132612
  10. Eckel RH, 2007, CIRCULATION, V115, P2231, DOI 10.1161/CIRCULATIONAHA.106.181947
  11. FILER LJ, 1969, J NUTR, V99, P293
  12. Filippou A, 2014, EUR J CLIN NUTR, V68, P549, DOI 10.1038/ejcn.2014.49
  13. Gao D, 2012, FREE RADICAL BIO MED, V53, P796, DOI 10.1016/j.freeradbiomed.2012.05.026
  14. Hansson GK, 2011, NAT IMMUNOL, V12, P204, DOI 10.1038/ni.2001
  15. Hu FB, 1997, NEW ENGL J MED, V337, P1491, DOI 10.1056/NEJM199711203372102
  16. INNIS SM, 1994, LIPIDS, V29, P541, DOI 10.1007/BF02536625
  17. Innis SM, 1997, J NUTR, V127, P1311
  18. Ishiyama J, 2011, J LIPID RES, V52, P299, DOI [10.1194/jlr.M007104, 10.1194/jlr.m007104]
  19. Ishiyama J, 2010, ATHEROSCLEROSIS, V209, P118, DOI 10.1016/j.atherosclerosis.2009.09.004
  20. Jiang HL, 2010, ATHEROSCLEROSIS, V210, P71, DOI 10.1016/j.atherosclerosis.2009.10.032
  21. Kirii H, 2003, ARTERIOSCL THROM VAS, V23, P656, DOI 10.1161/01.ATV.0000064374.15232.C3
  22. KrisEtherton PM, 1997, AM J CLIN NUTR, V65, P1628
  23. Kritchevsky D, 1998, J NUTR BIOCHEM, V9, P582, DOI 10.1016/S0955-2863(98)00053-9
  24. Kritchevsky D, 2000, LIPIDS, V35, P621, DOI 10.1007/s11745-000-0565-3
  25. KROMHOUT D, 1995, PREV MED, V24, P308, DOI 10.1006/pmed.1995.1049
  26. LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
  27. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  28. Machado AP, 2006, INT J BIOCHEM CELL B, V38, P392, DOI 10.1016/j.biocel.2005.09.016
  29. Machado M, 2010, J NUTR, V140, P1127
  30. Machado RM, 2012, ATHEROSCLEROSIS, V224, P66, DOI 10.1016/j.atherosclerosis.2012.06.059
  31. MATTSON FH, 1979, J NUTR, V109, P1682
  32. Mensink RP, 2003, AM J CLIN NUTR, V77, P1146
  33. NESTEL PJ, 1995, AM J CLIN NUTR, V62, P950
  34. Okuda LS, 2012, BBA-MOL CELL BIOL L, V1821, P1485, DOI 10.1016/j.bbalip.2012.08.011
  35. PAIGEN B, 1987, ATHEROSCLEROSIS, V68, P231, DOI 10.1016/0021-9150(87)90202-4
  36. Rader DJ, 2009, J LIPID RES, V50, pS189, DOI 10.1194/jlr.R800088-JLR200
  37. Rajamaki K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011765
  38. Reena MB, 2007, J AGR FOOD CHEM, V55, P10461, DOI 10.1021/jf0718042
  39. Reena MB, 2011, J NUTR, V141, P24, DOI 10.3945/jn.110.127027
  40. Robinson DM, 2009, LIPIDS, V44, P17, DOI 10.1007/s11745-008-3253-7
  41. Sanders TAB, 2011, AM J CLIN NUTR, V94, P1433, DOI 10.3945/ajcn.111.017459
  42. Silva R. C. da, 2010, LWT -- Food Science and Technology, V43, P752
  43. SPRITZ N, 1969, J CLIN INVEST, V48, P78, DOI 10.1172/JCI105976
  44. Sundram K, 2007, NUTR METAB, V4, DOI 10.1186/1743-7075-4-3
  45. TOMARELLI RM, 1968, J NUTR, V95, P583
  46. Vlahov G, 1998, MAGN RESON CHEM, V36, P359, DOI 10.1002/(SICI)1097-458X(199805)36:5<359::AID-OMR274>3.3.CO;2-Q
  47. Yli-Jokipii K, 2001, J LIPID RES, V42, P1618
  48. Zhao G. L., 2013, SCI WORLD J, V2013, P1