Enhanced immunogenicity and protective efficacy in mice following a Zika DNA vaccine designed by modulation of membrane-anchoring regions and its association to adjuvants

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorTEIXEIRA, Franciane Mouradian Emidio
dc.contributor.authorOLIVEIRA, Luana de Mendonca
dc.contributor.authorBRANCO, Anna Claudia Calvielli Castelo
dc.contributor.authorALBERCA, Ricardo Wesley
dc.contributor.authorSOUSA, Emanuella Sarmento Alho de
dc.contributor.authorLEITE, Bruno Henrique de Sousa
dc.contributor.authorADAN, Wenny Camilla dos Santos
dc.contributor.authorDUARTE, Alberto Jose da Silva
dc.contributor.authorLINS, Roberto Dias
dc.contributor.authorSATO, Maria Notomi
dc.contributor.authorVIANA, Isabelle Freire Tabosa
dc.date.accessioned2024-04-05T19:35:42Z
dc.date.available2024-04-05T19:35:42Z
dc.date.issued2024
dc.description.abstractZika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_Delta STP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_Delta STP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-Delta STP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_Delta STP+Alum protected adult mice upon viral challenge. Collectively, the ZK_Delta STP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.eng
dc.description.indexMEDLINE
dc.description.indexPubMed
dc.description.indexScopus
dc.description.indexDimensions
dc.description.indexWoS
dc.description.sponsorshipLaboratorio de Investigacao Medica, Unidade 56, Department of Dermatology, School of Medicine, University of Sao Paulo, Brazil
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2018/18230-6, 2019/25119-7]
dc.description.sponsorshipState of Pernambuco Funding Agency (Fundacaao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco - FACEPE) [BFP-0010-2.11/22, APQ-0346-2.09/19]
dc.description.sponsorshipNational Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq) [165071/2018-4, 303833/2022-0, 425997/2018-9]
dc.description.sponsorshipOswaldo Cruz Foundation through the Innovation Program (INOVA) [VPPCB-007-FIO-18-2-134, IAM-005-FIO-22-2-44]
dc.description.sponsorshipEuropean Union [H2020 734548]
dc.description.sponsorshipCuraZika Foundation [0061012]
dc.identifier.citationFRONTIERS IN IMMUNOLOGY, v.15, article ID 1307546, 12p, 2024
dc.identifier.doi10.3389/fimmu.2024.1307546
dc.identifier.issn1664-3224
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/59033
dc.language.isoeng
dc.publisherFRONTIERS MEDIA SAeng
dc.relation.ispartofFrontiers in Immunology
dc.rightsopenAccesseng
dc.rights.holderCopyright FRONTIERS MEDIA SAeng
dc.subjectDNA vaccineeng
dc.subjectZika viruseng
dc.subjectenvelope proteineng
dc.subjectmembrane-anchoring regionseng
dc.subjectadjuvantseng
dc.subjectprotectioneng
dc.subjectimmunogenicityeng
dc.subject.otherclass-ii compartmenteng
dc.subject.otherimmune-responseseng
dc.subject.othersignal sequenceseng
dc.subject.othervirus challengeeng
dc.subject.otherns1 geneeng
dc.subject.otherproteineng
dc.subject.otherdengueeng
dc.subject.otherimmunizationeng
dc.subject.otherantibodieseng
dc.subject.otherincreaseseng
dc.subject.wosImmunologyeng
dc.titleEnhanced immunogenicity and protective efficacy in mice following a Zika DNA vaccine designed by modulation of membrane-anchoring regions and its association to adjuvantseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalLEITE, Bruno Henrique de Sousa:Fundacao Oswaldo Cruz, Aggeu Magalhaes Inst, Dept Virol, Recife, Brazil
hcfmusp.author.externalADAN, Wenny Camilla dos Santos:Fundacao Oswaldo Cruz, Aggeu Magalhaes Inst, Dept Virol, Recife, Brazil
hcfmusp.author.externalLINS, Roberto Dias:Fundacao Oswaldo Cruz, Aggeu Magalhaes Inst, Dept Virol, Recife, Brazil
hcfmusp.author.externalVIANA, Isabelle Freire Tabosa:Fundacao Oswaldo Cruz, Aggeu Magalhaes Inst, Dept Virol, Recife, Brazil
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcFRANCIANE MOURADIAN EMIDIO TEIXEIRA
hcfmusp.contributor.author-fmusphcLUANA DE MENDONCA OLIVEIRA
hcfmusp.contributor.author-fmusphcANNA CLAUDIA CALVIELLI CASTELLO BRANCO
hcfmusp.contributor.author-fmusphcRICARDO WESLEY ALBERCA CUSTODIO
hcfmusp.contributor.author-fmusphcEMANUELLA SARMENTO ALHO DE SOUSA
hcfmusp.contributor.author-fmusphcALBERTO JOSE DA SILVA DUARTE
hcfmusp.contributor.author-fmusphcMARIA NOTOMI SATO
hcfmusp.description.articlenumber1307546
hcfmusp.description.volume15
hcfmusp.origemWOS
hcfmusp.origem.dimensionspub.1168055071
hcfmusp.origem.pubmed38361945
hcfmusp.origem.scopus2-s2.0-85185111645
hcfmusp.origem.wosWOS:001161460700001
hcfmusp.publisher.cityLAUSANNEeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAbbink P, 2016, SCIENCE, V353, P1129, DOI 10.1126/science.aah6157eng
hcfmusp.relation.referenceAlam A, 2016, IMMUNOLOGY, V149, P386, DOI 10.1111/imm.12656eng
hcfmusp.relation.referenceAshok MS, 2002, VACCINE, V20, P1563, DOI 10.1016/S0264-410X(01)00492-3eng
hcfmusp.relation.referenceAzevedo AS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020528eng
hcfmusp.relation.referencede Araújo TVB, 2018, LANCET INFECT DIS, V18, P328, DOI 10.1016/S1473-3099(17)30727-2eng
hcfmusp.relation.referenceBayer A, 2016, CELL HOST MICROBE, V19, P705, DOI 10.1016/j.chom.2016.03.008eng
hcfmusp.relation.referenceBraga C, 2023, PLOS NEGLECT TROP D, V17, DOI 10.1371/journal.pntd.0011270eng
hcfmusp.relation.referenceCastanha PMS, 2013, EPIDEMIOL INFECT, V141, P1080, DOI 10.1017/S0950268812001367eng
hcfmusp.relation.referenceChen CH, 2000, VACCINE, V18, P2015, DOI 10.1016/S0264-410X(99)00528-9eng
hcfmusp.relation.referenceCosta SM, 2007, VIROLOGY, V358, P413, DOI 10.1016/j.virol.2006.08.052eng
hcfmusp.relation.referenceCosta SM, 2006, VACCINE, V24, P195, DOI 10.1016/j.vaccine.2005.07.059eng
hcfmusp.relation.referenceCrill WD, 2004, J VIROL, V78, P13975, DOI 10.1128/JVI.78.24.13975-13986.2004eng
hcfmusp.relation.referenceDai LP, 2016, CELL HOST MICROBE, V19, P696, DOI 10.1016/j.chom.2016.04.013eng
hcfmusp.relation.referenceDe Arruda LB, 2004, IMMUNOLOGY, V112, P126, DOI 10.1111/j.1365-2567.2004.01823.xeng
hcfmusp.relation.referenceDelogu G, 2002, INFECT IMMUN, V70, P292, DOI 10.1128/IAI.70.1.292-302.2002eng
hcfmusp.relation.referenceDowd KA, 2016, SCIENCE, V354, P237, DOI 10.1126/science.aai9137eng
hcfmusp.relation.referenceMoreira MEL, 2018, NEW ENGL J MED, V379, P2377, DOI 10.1056/NEJMc1800098eng
hcfmusp.relation.referenceFirmino-Cruz L, 2022, VACCINES-BASEL, V10, DOI 10.3390/vaccines10081305eng
hcfmusp.relation.referenceGoldoni AL, 2011, IMMUNOBIOLOGY, V216, P505, DOI 10.1016/j.imbio.2010.08.007eng
hcfmusp.relation.referenceHasan SS, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14722eng
hcfmusp.relation.referenceIn HJ, 2020, VIROLOGY, V549, P25, DOI 10.1016/j.virol.2020.07.014eng
hcfmusp.relation.referenceKabashima K, 2019, NAT REV IMMUNOL, V19, P19, DOI 10.1038/s41577-018-0084-5eng
hcfmusp.relation.referenceKim W, 2022, NATURE, V604, P141, DOI 10.1038/s41586-022-04527-1eng
hcfmusp.relation.referenceKonishi E, 2003, VACCINE, V21, P3713, DOI 10.1016/S0264-410X(03)00376-1eng
hcfmusp.relation.referenceKostyuchenko VA, 2016, NATURE, V533, P425, DOI 10.1038/nature17994eng
hcfmusp.relation.referenceKou YM, 2017, IMMUNOL LETT, V190, P51, DOI 10.1016/j.imlet.2017.07.007eng
hcfmusp.relation.referenceKuhn RJ, 2015, VIROLOGY, V479, P508, DOI 10.1016/j.virol.2015.03.025eng
hcfmusp.relation.referenceKurup D, 2022, NPJ VACCINES, V7, DOI 10.1038/s41541-022-00464-2eng
hcfmusp.relation.referenceKutzler MA, 2008, NAT REV GENET, V9, P776, DOI 10.1038/nrg2432eng
hcfmusp.relation.referenceLarocca RA, 2019, CELL HOST MICROBE, V26, P591, DOI 10.1016/j.chom.2019.10.001eng
hcfmusp.relation.referenceLarocca RA, 2016, NATURE, V536, P474, DOI 10.1038/nature18952eng
hcfmusp.relation.referenceLee ACY, 2021, NPJ VACCINES, V6, DOI 10.1038/s41541-021-00359-8eng
hcfmusp.relation.referenceLeonhard SE, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008264eng
hcfmusp.relation.referenceLopez-Camacho C, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-04859-5eng
hcfmusp.relation.referenceLu Y, 2003, VACCINE, V21, P2178, DOI 10.1016/S0264-410X(03)00009-4eng
hcfmusp.relation.referenceLuo MC, 2008, J VIROL METHODS, V154, P121, DOI 10.1016/j.jviromet.2008.08.011eng
hcfmusp.relation.referenceMaciel M, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003693eng
hcfmusp.relation.referenceHurtado-Monzón AM, 2020, REV MED VIROL, V30, DOI 10.1002/rmv.2100eng
hcfmusp.relation.referenceMarques ETA, 2003, J BIOL CHEM, V278, P37926, DOI 10.1074/jbc.M303336200eng
hcfmusp.relation.referenceMedin CL, 2017, ARCH PATHOL LAB MED, V141, P33, DOI 10.5858/arpa.2016-0409-RAeng
hcfmusp.relation.referenceMedits I, 2020, EMBO REP, V21, DOI 10.15252/embr.202050069eng
hcfmusp.relation.referenceMiner JJ, 2017, CELL HOST MICROBE, V21, P134, DOI 10.1016/j.chom.2017.01.004eng
hcfmusp.relation.referenceOehler E, 2014, EUROSURVEILLANCE, V19, P4eng
hcfmusp.relation.referencePardi N, 2017, NATURE, V543, P248, DOI 10.1038/nature21428eng
hcfmusp.relation.referencePoland GA, 2018, LANCET INFECT DIS, V18, pE211, DOI 10.1016/S1473-3099(18)30063-Xeng
hcfmusp.relation.referencePulendran B, 2021, NAT REV DRUG DISCOV, V20, P454, DOI 10.1038/s41573-021-00163-yeng
hcfmusp.relation.referenceRichner JM, 2017, CELL, V170, P273, DOI 10.1016/j.cell.2017.06.040eng
hcfmusp.relation.referenceRigato PO, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031608eng
hcfmusp.relation.referenceRigato PO, 2010, VIROLOGY, V406, P37, DOI 10.1016/j.virol.2010.06.050eng
hcfmusp.relation.referenceSapparapu G, 2016, NATURE, V540, P443, DOI 10.1038/nature20564eng
hcfmusp.relation.referenceSmith SA, 2013, MBIO, V4, DOI 10.1128/mBio.00873-13eng
hcfmusp.relation.referenceStiasny K, 2013, J VIROL, V87, P9933, DOI 10.1128/JVI.01283-13eng
hcfmusp.relation.referenceTai WB, 2018, EMERG MICROBES INFEC, V7, DOI 10.1038/s41426-017-0007-8eng
hcfmusp.relation.referenceTangye SG, 2009, EUR J IMMUNOL, V39, P2065, DOI 10.1002/eji.200939531eng
hcfmusp.relation.referenceTeixeira FME, 2022, VACCINES-BASEL, V10, DOI 10.3390/vaccines10081246eng
hcfmusp.relation.referenceTeixeira FME, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.00175eng
hcfmusp.relation.referenceViana IFT, 2023, MOL SYST DES ENG, V8, P516, DOI 10.1039/d2me00170eeng
hcfmusp.relation.referenceVictora GD, 2022, ANNU REV IMMUNOL, V40, P413, DOI 10.1146/annurev-immunol-120419-022408eng
hcfmusp.relation.referenceWang JY, 2011, APPL MICROBIOL BIOT, V91, P731, DOI 10.1007/s00253-011-3297-0eng
hcfmusp.relation.referenceWU TC, 1995, P NATL ACAD SCI USA, V92, P11671, DOI 10.1073/pnas.92.25.11671eng
hcfmusp.relation.referenceYadav N, 2021, MICROBES INFECT, V23, DOI 10.1016/j.micinf.2021.104843eng
hcfmusp.relation.referenceYang CP, 2019, VIROL SIN, V34, P168, DOI 10.1007/s12250-019-00093-5eng
hcfmusp.relation.referenceYoung C, 2021, IMMUNITY, V54, P1652, DOI 10.1016/j.immuni.2021.07.015eng
hcfmusp.relation.referenceZehrung D, 2013, VACCINE, V31, P3392, DOI 10.1016/j.vaccine.2012.11.021eng
hcfmusp.relation.referenceZhang Z, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.963049eng
hcfmusp.relation.referenceZhu XL, 2018, ACTA NEUROPATHOL COM, V6, DOI 10.1186/s40478-018-0572-7eng
hcfmusp.scopus.lastupdate2024-04-12
relation.isAuthorOfPublication71a4944c-7ec5-4832-9dd9-d7d5a88b3f93
relation.isAuthorOfPublication53471138-2e04-44a5-a034-d20a7d03ee6b
relation.isAuthorOfPublicationcb919847-4890-4fac-b6f6-6abc44ab20e6
relation.isAuthorOfPublicatione00ba494-830e-4f2e-93aa-64a3a66a8048
relation.isAuthorOfPublication7fb12b29-8ec7-4b81-8136-35fb9e1f04b8
relation.isAuthorOfPublication8e4f2c15-06a5-444b-826d-84576403144e
relation.isAuthorOfPublicationc5fbfe7f-eec0-49ea-be33-ce5f13cc3dfb
relation.isAuthorOfPublication.latestForDiscovery71a4944c-7ec5-4832-9dd9-d7d5a88b3f93
Arquivos