Regulation of leukocyte tricarboxylic acid cycle in drug-naive Bipolar Disorder

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
STRECK, Emilio L.
FERREIRA, Gabriela K.
DINIZ, Breno S.
PORTELA, Luis V.
CARVALHO, Andre F.
ZARATE JR., Carlos A.
Citação
NEUROSCIENCE LETTERS, v.605, p.65-68, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Several lines of evidence suggest a role for mitochondrial dysfunction in the pathophysiology of bipolar disorder (BD). The tricarboxylic acid cycle (TCA cycle) is fundamental for mitochondrial energy production and produces substrates used in oxidative phosphorylation by the mitochondrial electron transport chain. The activity of the key TCA cycle enzymes citrate synthase, malate dehydrogenase, and succinate dehydrogenase has never been evaluated in BD. In the present study, these enzymes were assayed from leukocytes of drug-naive BD patients in a major depressive episode (n = 18) and compared to 24 age-matched healthy controls. Drug-naive BD patients did not show differences in activities of citrate synthase (p = 0.79), malate dehydrogenase (p = 0.17), and succinate dehydrogenase (p = 0.35) compared with healthy controls. No correlation between any TCA cycle enzyme activity and severity of depressive symptoms was observed. Overall, these data suggest that the activities of the TCA cycle enzymes are not altered in major depressive episodes of recent-onset BD, which may support the concept of illness staging and neuroprogression in BD.
Palavras-chave
Bipolar disorder, Mitochondria, Bioenergetics, Tricarboxylic acid cycle, Pathophysiology, Depression
Referências
  1. Middleton FA, 2005, AM J MED GENET B, V136B, P12, DOI 10.1002/ajmg.b.30171
  2. Oyedotun KS, 2004, J BIOL CHEM, V279, P9424, DOI 10.1074/jbc.M311876200
  3. HAMILTON M, 1960, J NEUROL NEUROSUR PS, V23, P56, DOI 10.1136/jnnp.23.1.56
  4. Masliah E, 2013, EPIGENETICS-US, V8, P1030, DOI 10.4161/epi.25865
  5. Ghiasi P, 2012, NEUROL RES, V34, P297, DOI 10.1179/1743132812Y.0000000012
  6. Andreazza AC, 2010, ARCH GEN PSYCHIAT, V67, P360, DOI 10.1001/archgenpsychiatry.2010.22
  7. Post RM, 2007, NEUROSCI BIOBEHAV R, V31, P858, DOI 10.1016/j.neubiorev.2007.04.003
  8. Machado-Vieira R, 2007, NEUROSCI LETT, V421, P33, DOI 10.1016/j.neulet.2007.05.016
  9. FISCHER JC, 1985, CLIN CHIM ACTA, V153, P23, DOI 10.1016/0009-8981(85)90135-4
  10. Lee BD, 2007, PSYCHIAT RES, V150, P1, DOI 10.1016/j.psychres.2006.06.001
  11. [Anonymous], 2014, BIOL PSYCHIAT, DOI 10.1016/J.PNPBP.2013.09.002
  12. Valvassori SS, 2013, J NEURAL TRANSM, V120, P1737, DOI 10.1007/s00702-013-1056-3
  13. CHRETIEN D, 1994, CLIN CHIM ACTA, V228, P53, DOI 10.1016/0009-8981(94)90056-6
  14. Larsen S, 2012, J PHYSIOL-LONDON, V590, P3349, DOI 10.1113/jphysiol.2012.230185
  15. MINARD KI, 1991, MOL CELL BIOL, V11, P370
  16. SHEPHERD D, 1969, BIOCHEM J, V114, P597
  17. Feier G, 2013, PHARMACOL BIOCHEM BE, V103, P589, DOI 10.1016/j.pbb.2012.09.010
  18. de Sousa RT, 2014, J PSYCHIATR RES, V50, P36, DOI 10.1016/j.jpsychires.2013.11.011
  19. Berk M., 2013, BIPOLAR DISORD, V16, P471
  20. Brown AM., 2000, NEUROBIOL AGING, V21, P81, DOI 10.1016/S0197-4580(00)82590-7
  21. Cai CC, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-589
  22. de Sousa RT, 2014, EXPERT OPIN THER TAR, V18, P1131, DOI 10.1517/14728222.2014.940893
  23. de Sousa RT, 2015, PSYCHOPHARMACOLOGY, V232, P245, DOI 10.1007/s00213-014-3655-6
  24. First M, 1995, STRUCTURED CLIN INTE
  25. Kitto G. B., 1969, METHOD ENZYMOL, P106
  26. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  27. Machado-Vieira R, 2013, WORLD J BIOL PSYCHIA, V15, P84
  28. NOBLE P. B., 1967, CAN VET J, V8, P110
  29. Valvassori S. S., 2013, PSYCHIAT RES
  30. YOUNG RC, 1978, BRIT J PSYCHIAT, V133, P429, DOI 10.1192/bjp.133.5.429