Electroencephalography as a Biomarker for Functional Recovery in Spinal Cord Injury Patients

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
CAMSARI, Deniz Doruk
FILIPPO, Thais Raquel Martins
FREGNI, Felipe
Citação
FRONTIERS IN HUMAN NEUROSCIENCE, v.15, article ID 548558, 8p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Functional changes after spinal cord injury (SCI) are related to changes in cortical plasticity. These changes can be measured with electroencephalography (EEG) and has potential to be used as a clinical biomarker. Method In this longitudinal study participants underwent a total of 30 sessions of robotic-assisted gait training (RAGT) over a course of 6 weeks. The duration of each session was 30 min. Resting state EEG was recorded before and after 30-session rehabilitation therapy. To measure gait, we used the Walking Index for Spinal Cord Injury Scale, 10-Meter- Walking Test, Timed-Up-and-Go, and 6-Min-Walking Test. Balance was measured using Berg Balance Scale. Results Fifteen participants with incomplete SCI who had AIS C or D injuries based on American Spinal Cord Injury Association Impairment Scale classification were included in this study. Mean age was 35.7 years (range 17-51) and the mean time since injury was 17.08 (range 4-37) months. All participants showed clinical improvement with the rehabilitation program. EEG data revealed that high beta EEG activity in the central area had a negative correlation with gait (p = 0.049; beta coefficient: -0.351; and adj-R-2: 0.23) and balance (p = 0.043; beta coefficient: -0.158; and adj-R-2:0.24) measured at baseline, in a way that greater high beta EEG power was related to worse clinical function at baseline. Moreover, improvement in gait and balance had negative correlations with the change in alpha/theta ratio in the parietal area (Gait: p = 0.049; beta coefficient: -0.351; adj-R-2: 0.23; Balance: p = 0.043; beta coefficient: -0.158; and adj-R-2: 0.24). Conclusion In SCI, functional impairment and subsequent improvement following rehabilitation therapy with RAGT correlated with the change in cortical activity measured by EEG. Our results suggest that EEG alpha/theta ratio may be a potential surrogate marker of functional improvement during rehabilitation. Future studies are necessary to improve and validate these findings as a neurophysiological biomarker for SCI rehabilitation.
Palavras-chave
spinal cord injury, electroencephalography, rehabilitation, biomarkers, neuroplasticity
Referências
  1. Athanasiou A, 2018, NEURAL PLAST, V2018, DOI 10.1155/2018/9354207
  2. Athanasiou A, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00517
  3. BERG K, 1989, Physiotherapy Canada, V41, P304
  4. Bohannon Richard W, 2006, J Geriatr Phys Ther, V29, P64
  5. Bollimunta A, 2011, J NEUROSCI, V31, P4935, DOI 10.1523/JNEUROSCI.5580-10.2011
  6. Brown RE, 2015, FRONT NEUROL, V6, DOI 10.3389/fneur.2015.00135
  7. Cheliout-Heraut F, 1998, NEUROPHYSIOL CLIN, V28, P39, DOI 10.1016/S0987-7053(97)89577-9
  8. Cremoux S, 2013, BRAIN RES, V1533, P44, DOI 10.1016/j.brainres.2013.08.008
  9. De Vico FF, 2008, IEEE ENG MED BIO, P3995, DOI 10.1109/IEMBS.2008.4650085
  10. Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
  11. Ditunno JF, 2000, SPINAL CORD, V38, P234, DOI 10.1038/sj.sc.3100993
  12. Doruk D., 2017, PRINC PRACT CLIN RES, V3, P1
  13. Etnier JL, 1996, RES Q EXERCISE SPORT, V67, P272, DOI 10.1080/02701367.1996.10607954
  14. Fallani FDV, 2007, HUM BRAIN MAPP, V28, P1334, DOI 10.1002/hbm.20353
  15. Gourab K, 2010, CLIN NEUROPHYSIOL, V121, P2017, DOI 10.1016/j.clinph.2010.05.012
  16. Hasselmo ME, 2005, HIPPOCAMPUS, V15, P936, DOI 10.1002/hipo.20116
  17. Hawasli AH, 2018, J NEUROTRAUM, V35, P864, DOI 10.1089/neu.2017.5212
  18. Herbert D, 2007, INT J NEUROSCI, V117, P1731, DOI 10.1080/00207450701242826
  19. Hindriks R, 2013, NEUROIMAGE, V70, P150, DOI 10.1016/j.neuroimage.2012.12.018
  20. Hirata A, 2010, J NEUROPHYSIOL, V103, P1147, DOI 10.1152/jn.00955.2009
  21. Hou JM, 2016, HUM BRAIN MAPP, V37, P2195, DOI 10.1002/hbm.23163
  22. Jackson AB, 2008, J SPINAL CORD MED, V31, P487, DOI 10.1080/10790268.2008.11753644
  23. Kang Y, 2018, J NEURORESTORATOLOGY, V6, P1, DOI 10.2147/JN.S143236
  24. Kiefer A.W., 2014, J NOV PHYSIOTHER, V4
  25. Kuhn F, 2012, J NEUROTRAUM, V29, P1829, DOI 10.1089/neu.2011.2277
  26. Leite VF, 2019, SPINAL CORD, V57, P134, DOI 10.1038/s41393-018-0183-y
  27. LEWKO JP, 1995, RESTOR NEUROL NEUROS, V7, P225, DOI 10.3233/RNN-1994-7405
  28. Liu J, 2012, NEURAL REGEN RES, V7, P386, DOI 10.3969/j.issn.1673-5374.2012.05.010
  29. Llinas RR, 2006, J NEUROPHYSIOL, V95, P3297, DOI 10.1152/jn.00166.2006
  30. Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222
  31. Lopez-Larraz E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131759
  32. Mattia D, 2006, HUM BRAIN MAPP, V27, P510, DOI 10.1002/hbm.20195
  33. Mattia D, 2009, CLIN NEUROPHYSIOL, V120, P181, DOI 10.1016/j.clinph.2008.09.023
  34. Muller-Putz GR, 2007, BRAIN RES, V1137, P84, DOI 10.1016/j.brainres.2006.12.052
  35. Muller-Putz G.R., 2014, J NEURAL ENG, V11, P2017, DOI 10.1016/S0140-6736(17)32366-8
  36. Nam KY, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0232-3
  37. Olbrich S, 2013, INT REV PSYCHIATR, V25, P604, DOI 10.3109/09540261.2013.816269
  38. Pignatelli M, 2012, J PHYSIOL-PARIS, V106, P81, DOI 10.1016/j.jphysparis.2011.09.007
  39. Rossiter HE, 2014, NEUROIMAGE, V91, P360, DOI 10.1016/j.neuroimage.2014.01.012
  40. Scivoletto G, 2011, SPINAL CORD, V49, P736, DOI 10.1038/sc.2010.180
  41. Simis M, 2020, CLIN NEUROPHYSIOL, V131, P1806, DOI 10.1016/j.clinph.2020.04.166
  42. Simis M, 2016, RESTOR NEUROL NEUROS, V34, P45, DOI 10.3233/RNN-150550
  43. Smith ME, 1999, COGNITIVE BRAIN RES, V7, P389, DOI 10.1016/S0926-6410(98)00043-3
  44. Spiess M, 2008, CLIN NEUROPHYSIOL, V119, P1051, DOI 10.1016/j.clinph.2008.01.021
  45. Thibaut A, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00187
  46. Trammell JP, 2017, FRONT AGING NEUROSCI, V9, DOI 10.3389/fnagi.2017.00364
  47. Tramonti C, 2019, EUR J PHYS REHAB MED, V55, P743, DOI 10.23736/S1973-9087.18.05414-X
  48. Tran Y, 2004, SPINAL CORD, V42, P73, DOI 10.1038/sj.sc.3101543
  49. Trujillo P, 2017, IEEE T NEUR SYS REH, V25, P1058, DOI 10.1109/TNSRE.2017.2678161
  50. van Hedel HJ, 2005, ARCH PHYS MED REHAB, V86, P190, DOI 10.1016/j.apmr.2004.02.010
  51. Whittington MA, 2000, INT J PSYCHOPHYSIOL, V38, P315, DOI 10.1016/S0167-8760(00)00173-2