Exercise Mitigates Bone Loss in Women With Severe Obesity After Roux-en-Y Gastric Bypass: A Randomized Controlled Trial

Carregando...
Imagem de Miniatura
Citações na Scopus
51
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ENDOCRINE SOC
Autores
Citação
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, v.104, n.10, p.4639-4650, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context: Bone loss after bariatric surgery potentially could be mitigated by exercise. Objective: To investigate the role of exercise training (ET) in attenuating bariatric surgery-induced bone loss. Design: Randomized, controlled trial. Setting: Referral center for bariatric surgery. Patients: Seventy women with severe obesity, aged 25 to 55 years, who underwent Roux-en-Y gastric bypass (RYGB). Intervention: Supervised, 6-month, ET program after RYGB vs. standard of care (RYGB only). Outcomes: Areal bone mineral density (aBMD) was the primary outcome. Bone microarchitecture, bone turnover, and biochemical markers were secondary outcomes. Results: Surgery significantly decreased femoral neck, total hip, distal radius, and whole body aBMD (P < 0.001); and increased bone turnover markers, including collagen type I C-telopeptide (CTX), procollagen type I N-propeptide (P1NP), sclerostin, and osteopontin (P < 0.05). Compared with RYGB only, exercise mitigated the percent loss of aBMD at femoral neck [estimated mean difference (EMD), -2.91%; P = 0.007;], total hip (EMD, -2.26%; P = 0.009), distal radius (EMD, -1.87%; P = 0.038), and cortical volumetric bone mineral density at distal radius (EMD, -2.09%; P = 0.024). Exercise also attenuated CTX (EMD, -0.20 ng/mL; P = 0.002), P1 NP (EMD, -17.59 ng/mL; P = 0.024), and sclerostin levels (EMD, -610 pg/mL; P = 0.046) in comparison with RYGB. Exercise did not affect biochemical markers (e.g., 25(OH)D, calcium, intact PTH, phosphorus, and magnesium). Conclusion: Exercise mitigated bariatric surgery-induced bone loss, possibly through mechanisms involving suppression in bone turnover and sclerostin. Exercise should be incorporated in postsurgery care to preserve bone mass.
Palavras-chave
Referências
  1. Adams TD, 2007, NEW ENGL J MED, V357, P753, DOI 10.1056/NEJMoa066603
  2. Amrein K, 2012, J CLIN ENDOCR METAB, V97, P148, DOI 10.1210/jc.2011-2152
  3. Armamento-Villareal R, 2012, J BONE MINER RES, V27, P1215, DOI 10.1002/jbmr.1560
  4. Axelsson KF, 2018, J BONE MINER RES, V33, P2122, DOI 10.1002/jbmr.3553
  5. Bacchetti P, 2008, BIOMETRICS, V64, P577, DOI 10.1111/j.1541-0420.2008.01004.x
  6. Bacchetti P, 2010, BMC MED, V8, DOI 10.1186/1741-7015-8-17
  7. Baron R, 2013, NAT MED, V19, P179, DOI 10.1038/nm.3074
  8. Brzozowska MM, 2013, OBES REV, V14, P52, DOI 10.1111/j.1467-789X.2012.01050.x
  9. Buchwald H, 2004, JAMA-J AM MED ASSOC, V292, P1724, DOI 10.1001/jama.292.14.1724
  10. Campanha-Versiani L, 2017, OBES SURG, V27, P2129, DOI 10.1007/s11695-017-2618-5
  11. Coates PS, 2004, J CLIN ENDOCR METAB, V89, P1061, DOI 10.1210/jc.2003-031756
  12. Dantas WS, 2018, J AM COLL CARDIOL, V72, P2278, DOI 10.1016/j.jacc.2018.07.094
  13. Fleischer J, 2008, J CLIN ENDOCR METAB, V93, P3735, DOI 10.1210/jc.2008-0481
  14. Frederiksen KD, 2016, CALCIFIED TISSUE INT, V98, P253, DOI 10.1007/s00223-015-0091-5
  15. Gomez-Cabello A, 2012, SPORTS MED, V42, P301, DOI 10.2165/11597670-000000000-00000
  16. Guadalupe-Grau A, 2009, SPORTS MED, V39, P439, DOI 10.2165/00007256-200939060-00002
  17. Hinton PS, 2017, BONE, V96, P85, DOI 10.1016/j.bone.2016.10.011
  18. Jakobsen GS, 2018, JAMA-J AM MED ASSOC, V319, P291, DOI 10.1001/jama.2017.21055
  19. Krishnan V, 2006, J CLIN INVEST, V116, P1202, DOI 10.1172/JCI28551
  20. Li XD, 2008, J BONE MINER RES, V23, P860, DOI 10.1359/JBMR.080216
  21. Lindeman KG, 2018, J CLIN ENDOCR METAB, V103, P4104, DOI 10.1210/jc.2018-01496
  22. Lu CW, 2015, MEDICINE, V94, DOI 10.1097/MD.0000000000002087
  23. Maghrabi AH, 2015, OBESITY, V23, P2344, DOI 10.1002/oby.21150
  24. McClung MR, 2014, NEW ENGL J MED, V370, P412, DOI 10.1056/NEJMoa1305224
  25. McClung MR, 2006, NEW ENGL J MED, V354, P821, DOI 10.1056/NEJMoa044459
  26. Moize V, 2011, OBES SURG, V21, P1382, DOI 10.1007/s11695-011-0360-y
  27. Muschitz C, 2016, J BONE MINER RES, V31, P672, DOI 10.1002/jbmr.2707
  28. Muschitz C, 2015, J CLIN ENDOCR METAB, V100, P891, DOI 10.1210/jc.2014-3367
  29. Nakamura KM, 2014, OSTEOPOROSIS INT, V25, P151, DOI 10.1007/s00198-013-2463-x
  30. Omori CH, 2012, ARTHRIT CARE RES, V64, P1186, DOI 10.1002/acr.21684
  31. OTT MT, 1992, OBES SURG, V2, P341, DOI 10.1381/096089292765559936
  32. Parrott J, 2017, SURG OBES RELAT DIS, V13, P727, DOI 10.1016/j.soard.2016.12.018
  33. Reges O, 2018, JAMA-J AM MED ASSOC, V319, P279, DOI 10.1001/jama.2017.20513
  34. Schafer AL, 2018, J BONE MINER RES, V33, P975, DOI 10.1002/jbmr.3371
  35. Schafer AL, 2015, J BONE MINER RES, V30, P1377, DOI 10.1002/jbmr.2467
  36. Schauer PR, 2012, NEW ENGL J MED, V366, P1567, DOI 10.1056/NEJMoa1200225
  37. Shanbhogue VV, 2017, EUR J ENDOCRINOL, V176, P685, DOI 10.1530/EJE-17-0014
  38. Shepherd JA, 2006, J CLIN DENSITOM, V9, P31, DOI 10.1016/j.jocd.2006.05.005
  39. Sjostrom L, 2014, JAMA-J AM MED ASSOC, V311, P2297, DOI 10.1001/jama.2014.5988
  40. Spatz JM, 2012, J CLIN ENDOCR METAB, V97, pE1736, DOI 10.1210/jc.2012-1579
  41. Stein EM, 2014, LANCET DIABETES ENDO, V2, P165, DOI 10.1016/S2213-8587(13)70183-9
  42. Stein EM, 2013, J CLIN ENDOCR METAB, V98, P541, DOI 10.1210/jc.2012-2394
  43. Villareal DT, 2017, NEW ENGL J MED, V376, P1943, DOI 10.1056/NEJMoa1616338
  44. Yu EW, 2017, J BONE MINER RES, V32, P1229, DOI 10.1002/jbmr.3101
  45. Yu EW, 2015, J CLIN ENDOCR METAB, V100, P1452, DOI 10.1210/jc.2014-4341
  46. Yu EW, 2014, J BONE MINER RES, V29, P1507, DOI 10.1002/jbmr.2226
  47. Zhang Q, 2018, OBES REV, V19, P728, DOI 10.1111/obr.12665