Skeletal muscle histidine-containing dipeptide contents are increased in freshwater turtles (C. picta bellii) with cold-acclimation

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
DOLAN, Eimear
WARREN, Daniel E.
HARRIS, Roger C.
SALE, Craig
Citação
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, v.262, article ID 111071, 6p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Freshwater turtles found in higher latitudes can experience extreme challenges to acid-base homeostasis while overwintering, due to a combination of cold temperatures along with the potential for environmental hypoxia. Histidine-containing dipeptides (HCDs; carnosine, anserine and balenine) may facilitate pH regulation in response to these challenges, through their role as pH buffers. We measured the HCD content of three tissues (liver, cardiac and skeletal muscle) from the anoxia-tolerant painted turtle (C. picta bellii) acclimated to either 3 or 20 degrees C. HCDs were detected in all tissues, with the highest content shown in the skeletal muscle. Turtles acclimated to 3 degrees C had more HCD in their skeletal muscle than those acclimated to 20 degrees C (carnosine = 20.8 +/- 4.5 vs 12.5 +/- 5.9 mmol. kg DM-1; ES = 1.59 (95%CI: 0.16-3.00), P = 0.013). The higher HCD content shown in the skeletal muscle of the cold-acclimated turtles suggests a role in acid-base regulation in response to physiological challenges associated with living in the cold, with the increase possibly related to the temperature sensitivity of carnosine's dissociation constant.
Palavras-chave
Alphastat, pH, Acid-base, Carnosine, Buffering, Hypoxia, Hibernation
Referências
  1. ABE H, 1985, AM J PHYSIOL, V249, pR449, DOI 10.1152/ajpregu.1985.249.4.R449
  2. Amrhein V, 2017, PEERJ, V5, DOI 10.7717/peerj.3544
  3. BLOMBERG S, 1991, J COMP PHYSIOL B, V161, P101, DOI 10.1007/BF00258753
  4. BOLDYREV A, 1995, COMP BIOCHEM PHYS B, V112, P481, DOI 10.1016/0305-0491(95)00084-4
  5. Boldyrev A, 1999, CELL MOL NEUROBIOL, V19, P163, DOI 10.1023/A:1006914028195
  6. Boldyrev AA, 2013, PHYSIOL REV, V93, P1803, DOI 10.1152/physrev.00039.2012
  7. Burton RF, 2002, J EXP BIOL, V205, P3587
  8. CRUSH KG, 1970, COMP BIOCHEM PHYSIOL, V34, P3, DOI 10.1016/0010-406X(70)90049-6
  9. DAVEY CL, 1960, ARCH BIOCHEM BIOPHYS, V89, P303, DOI 10.1016/0003-9861(60)90059-X
  10. Dolan E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32636-3
  11. Dolan E, 2019, COMP BIOCHEM PHYS A, V234, P77, DOI 10.1016/j.cbpa.2019.04.017
  12. Granger DN, 2015, REDOX BIOL, V6, P524, DOI 10.1016/j.redox.2015.08.020
  13. Hamm LL, 2015, CLIN J AM SOC NEPHRO, V10, P2232, DOI 10.2215/CJN.07400715
  14. HARRIS RC, 1990, COMP BIOCHEM PHYS A, V97, P249, DOI 10.1016/0300-9629(90)90180-Z
  15. HITZIG BM, 1994, AM J PHYSIOL, V266, pR1008, DOI 10.1152/ajpregu.1994.266.3.R1008
  16. HOCHACHKA PW, 1983, SCIENCE, V219, P1391, DOI 10.1126/science.6298937
  17. Ihara H, 2019, J BIOL CHEM, V294, P1279, DOI 10.1074/jbc.RA118.006111
  18. Jackson DC, 2000, NEWS PHYSIOL SCI, V15, P181
  19. JACKSON DC, 1983, RESP PHYSIOL, V53, P187, DOI 10.1016/0034-5687(83)90066-X
  20. Jackson DC, 2002, J PHYSIOL-LONDON, V543, P731, DOI 10.1113/jphysiol.2002.024729
  21. Jones RS, 2016, CLIN PHARMACOL THER, V100, P454, DOI 10.1002/cpt.418
  22. Jubrias SA, 2003, J PHYSIOL-LONDON, V553, P589, DOI 10.1113/jphysiol.2003.045872
  23. Mora L, 2007, J AGR FOOD CHEM, V55, P4664, DOI 10.1021/jf0703809
  24. Noren SR, 2004, MAR MAMMAL SCI, V20, P808, DOI 10.1111/j.1748-7692.2004.tb01194.x
  25. Odegard DT, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.176990
  26. OLSON JM, 1989, J EXP BIOL, V145, P471
  27. PAN JW, 1991, MAGNET RESON MED, V20, P57, DOI 10.1002/mrm.1910200107
  28. PLOWMAN JE, 1988, J SCI FOOD AGR, V45, P69, DOI 10.1002/jsfa.2740450109
  29. REEVES RB, 1972, RESP PHYSIOL, V14, P219, DOI 10.1016/0034-5687(72)90030-8
  30. Rezende NS, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00913
  31. Robergs RA, 2004, AM J PHYSIOL-REG I, V287, pR502, DOI 10.1152/ajpregu.00114.2004
  32. SAHLIN K, 1975, BIOCHEM J, V152, P173, DOI 10.1042/bj1520173
  33. SAHLIN K, 1976, PFLUG ARCH EUR J PHY, V367, P143, DOI 10.1007/BF00585150
  34. Saunders B, 2020, EUR J NUTR, V59, P57, DOI 10.1007/s00394-018-1881-0
  35. Saunders B, 2017, MED SCI SPORT EXER, V49, P896, DOI 10.1249/MSS.0000000000001173
  36. Smith ECB, 1938, J PHYSIOL-LONDON, V92, P336, DOI 10.1113/jphysiol.1938.sp003605
  37. Spelnikov D, 2019, AMINO ACIDS, V51, P115, DOI 10.1007/s00726-018-2646-z
  38. SUYAMA M, 1988, NIPPON SUISAN GAKK, V54, P505
  39. Thomas C, 2012, AM J PHYSIOL-REG I, V302, pR1, DOI 10.1152/ajpregu.00250.2011
  40. ULTSCH GR, 1982, J EXP BIOL, V97, P87
  41. Warren DE, 2008, J COMP PHYSIOL B, V178, P133, DOI 10.1007/s00360-007-0212-1
  42. Warren DE, 2007, AM J PHYSIOL-REG I, V293, pR458, DOI 10.1152/ajpregu.00174.2006
  43. WASSER JS, 1991, RESP PHYSIOL, V84, P363, DOI 10.1016/0034-5687(91)90130-B