Sex differences in Alzheimer's disease and common neuropathologies of aging

Carregando...
Imagem de Miniatura
Citações na Scopus
176
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
OVEISGHARAN, Shahram
ARVANITAKIS, Zoe
YU, Lei
SCHNEIDER, Julie A.
BENNETT, David A.
Citação
ACTA NEUROPATHOLOGICA, v.136, n.6, p.887-900, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Alzheimer's dementia is significantly more common in women than in men. However, few pathological studies have addressed sex difference in Alzheimer's disease (AD) and other brain pathologies. We leveraged postmortem data from 1453 persons who participated in one of two longitudinal community-based studies of older adults, the Religious Orders Study and the Rush Memory and Aging Project. Postmortem examination identified AD pathologies, neocortical Lewy bodies, DNA-binding protein 43 (TDP-43), hippocampal sclerosis, gross and micro infarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy. Linear and logistic regressions examined the association of sex with each of the pathologic measures. Two-thirds of subjects were women (n=971; 67%), with a mean age at death of 89.8 (SD=6.6) years in women and 87.3 (SD=6.6) in men. Adjusted for age and education, women had higher levels on a global measure of AD pathology (estimate=0.102, SE=0.022, p<0.001), and tau tangle density in particular (estimate=0.334, SE=0.074, p<0.001), and there was a borderline difference between women and men in amyloid- load (estimate=0.124, SE=0.065, p=0.056). In addition, compared to men, women were more likely to have more severe arteriolosclerosis (OR=1.28, 95% CI:1.04-1.58, p=0.018), and less likely to have gross infarcts (OR=0.78, 95% CI:0.61-0.98, p=0.037), although the association with gross infarct was attenuated after controlling for vascular risk factors. These data help elucidate the neuropathologic footprint of sex difference in AD and other common brain pathologies of aging.
Palavras-chave
Alzheimer disease, Sex, Pathology, Tau proteins, Amyloid, Arteriolosclerosis
Referências
  1. Alvarez-De-La-Rosa M, 2005, ANN NY ACAD SCI, V1052, P210, DOI 10.1196/annals.1347.016
  2. Alzheimer's Association, 2016, Alzheimers Dement, V12, P459
  3. Arvanitakis Z, 2006, NEUROLOGY, V67, P1960, DOI 10.1212/01.wnl.0000247053.45483.4e
  4. Arvanitakis Z, 2018, NEUROLOGY, V91, pE517, DOI 10.1212/WNL.0000000000005951
  5. Arvanitakis Z, 2017, BRAIN PATHOL, V27, P77, DOI 10.1111/bpa.12365
  6. Arvanitakis Z, 2016, LANCET NEUROL, V15, P934, DOI 10.1016/S1474-4422(16)30029-1
  7. Arvanitakis Z, 2011, STROKE, V42, P722, DOI 10.1161/STROKEAHA.110.595082
  8. Barnes LL, 2005, ARCH GEN PSYCHIAT, V62, P685, DOI 10.1001/archpsyc.62.6.685
  9. Barnes LL, 2003, NEUROLOGY, V60, P1777, DOI 10.1212/01.WNL.0000065892.67099.2A
  10. Bennett DA, 2004, ARCH NEUROL-CHICAGO, V61, P378, DOI 10.1001/archneur.61.3.378
  11. Bennett DA, 2003, NEUROLOGY, V60, P246, DOI 10.1212/01.WNL.0000042478.08543.F7
  12. Bennett DA, 2018, J ALZHEIMERS DIS, V64, pS161, DOI 10.3233/JAD-179939
  13. Bennett DA, 2012, ANN NEUROL, V72, P599, DOI 10.1002/ana.23654
  14. Bove R, 2014, NEUROLOGY, V82, P222, DOI 10.1212/WNL.0000000000000033
  15. Boyle PA, 2015, NEUROLOGY, V85, P1930, DOI 10.1212/WNL.0000000000002175
  16. Congdon EE, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00372
  17. Corder EH, 2004, ANN NY ACAD SCI, V1019, P24, DOI 10.1196/annals.1297.005
  18. Deming Y, 2018, ACTA NEUROPATHOL, V136, P857, DOI 10.1007/s00401-018-1881-4
  19. Devi L, 2010, MOL BRAIN, V3, DOI 10.1186/1756-6606-3-34
  20. Edland SD, 2002, ARCH NEUROL-CHICAGO, V59, P1589, DOI 10.1001/archneur.59.10.1589
  21. Farrer LA, 1997, JAMA-J AM MED ASSOC, V278, P1349, DOI 10.1001/jama.278.16.1349
  22. Filon JR, 2016, J NEUROPATH EXP NEUR, V75, P748, DOI 10.1093/jnen/nlw047
  23. Fratiglioni L, 1997, NEUROLOGY, V48, P132, DOI 10.1212/WNL.48.1.132
  24. Ghebremedhin E, 2001, NEUROLOGY, V56, P1696, DOI 10.1212/WNL.56.12.1696
  25. Hohman TJ, 2018, JAMA NEUROL, V75, P989, DOI 10.1001/jamaneurol.2018.0821
  26. Hyman BT, 1997, J NEUROPATH EXP NEUR, V56, P1095, DOI 10.1097/00005072-199710000-00002
  27. Iacobas DA, 2010, FUNCT INTEGR GENOMIC, V10, P73, DOI 10.1007/s10142-009-0137-8
  28. Ighodaro ET, 2017, J CEREBR BLOOD F MET, V37, P201, DOI 10.1177/0271678X15621574
  29. James BD, 2016, BRAIN, V139, P2983, DOI 10.1093/brain/aww224
  30. James BD, 2012, JAMA-J AM MED ASSOC, V307, P1798, DOI 10.1001/jama.2012.3556
  31. Jellinger KA, 2015, J NEURAL TRANSM, V122, P505, DOI 10.1007/s00702-014-1288-x
  32. Kawas C, 2000, NEUROLOGY, V54, P2072, DOI 10.1212/WNL.54.11.2072
  33. Koglsberger S, 2017, MOL NEUROBIOL, V54, P7979, DOI 10.1007/s12035-016-0299-z
  34. Kovacs GG, 2008, DEMENT GERIATR COGN, V26, P343, DOI 10.1159/000161560
  35. Lee JY, 2002, P NATL ACAD SCI USA, V99, P7705, DOI 10.1073/pnas.092034699
  36. Maynard CJ, 2006, J INORG BIOCHEM, V100, P952, DOI 10.1016/j.jinorgbio.2006.02.010
  37. McKeith IG, 2005, NEUROLOGY, V65, P1863, DOI 10.1212/01.wnl.0000187889.17253.b1
  38. Melnikova T, 2006, NEUROSCIENCE, V141, P1149, DOI 10.1016/j.neuroscience.2006.05.001
  39. Miech RA, 2002, NEUROLOGY, V58, P209, DOI 10.1212/WNL.58.2.209
  40. Mielke MM, 2014, CLIN EPIDEMIOL, V6, P37, DOI 10.2147/CLEP.S37929
  41. MILLER FD, 1984, AM J EPIDEMIOL, V120, P331
  42. Nag S, 2015, ANN NEUROL, V77, P942, DOI 10.1002/ana.24388
  43. National Center for Health Statistics, 2017, HLTH US 2016 CHARTB
  44. Nelson PT, 2010, J NEUROL, V257, P1875, DOI 10.1007/s00415-010-5630-4
  45. Oikawa N, 2010, NEUROSCI LETT, V468, P243, DOI 10.1016/j.neulet.2009.11.005
  46. Oveisgharan S, 2018, NEUROLOGY, V90, pE2127, DOI [10.1212/wnl.0000000000005677, 10.1212/WNL.0000000000005677]
  47. Petersen RC, 2010, NEUROLOGY, V75, P889, DOI 10.1212/WNL.0b013e3181f11d85
  48. Placanica L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005088
  49. Plassman BL, 2011, ANN NEUROL, V70, P418, DOI 10.1002/ana.22362
  50. Reynolds WF, 1999, EXP NEUROL, V155, P31, DOI 10.1006/exnr.1998.6977
  51. Rocca WA, 2007, NEUROLOGY, V69, P1074, DOI 10.1212/01.wnl.0000276984.19542.e6
  52. Rocca WA, 2012, NEURODEGENER DIS, V10, P175, DOI 10.1159/000334764
  53. Rocca WA, 2011, BRAIN RES, V1379, P188, DOI 10.1016/j.brainres.2010.10.031
  54. Sandberg G, 2001, NEUROBIOL AGING, V22, P169, DOI 10.1016/S0197-4580(00)00236-0
  55. Savva GM, 2009, NEW ENGL J MED, V360, P2302, DOI 10.1056/NEJMoa0806142
  56. Schafer S, 2007, J NEURAL TRANSM, V114, P387, DOI 10.1007/s00702-006-0580-9
  57. Schneider JA, 2012, BRAIN, V135, P3005, DOI 10.1093/brain/aws234
  58. Schneider JA, 2003, NEUROLOGY, V60, P1082, DOI 10.1212/01.WNL.0000055863.87435.B2
  59. Schneider JA, 2007, NEUROLOGY, V69, P2197, DOI 10.1212/01.wnl.0000271090.28148.24
  60. Scott EL, 2014, MOL CELL ENDOCRINOL, V389, P2, DOI 10.1016/j.mce.2014.01.013
  61. Seshadri S, 1997, NEUROLOGY, V49, P1498, DOI 10.1212/WNL.49.6.1498
  62. Wilson RS, 2013, JAMA NEUROL, V70, P1418, DOI 10.1001/jamaneurol.2013.3961
  63. Wilson RS, 2002, PSYCHOL AGING, V17, P179, DOI 10.1037//0882-7974.17.2.179
  64. Yu L, 2017, NEUROLOGY, V88, P661, DOI 10.1212/WNL.0000000000003614
  65. Yu L, 2014, NEUROBIOL AGING, V35, P819, DOI 10.1016/j.neurobiolaging.2013.10.074
  66. Zhang QG, 2013, BRAIN, V136, P1432, DOI 10.1093/brain/awt046