MUSCLE ACTIVATION DIFFERS BETWEEN PARTIAL AND FULL BACK SQUAT EXERCISE WITH EXTERNAL LOAD EQUATED

Carregando...
Imagem de Miniatura
Citações na Scopus
40
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
SILVA, Josinaldo J. da
SCHOENFELD, Brad J.
MARCHETTI, Priscyla N.
PECORARO, Silvio L.
Citação
JOURNAL OF STRENGTH AND CONDITIONING RESEARCH, v.31, n.6, p.1688-1693, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Changes in range of motion affect the magnitude of the load during the squat exercise and, consequently, may influence muscle activation. The purpose of this study was to evaluate muscle activation between the partial and full back squat exercise with external load equated on a relative basis between conditions. Fifteen young, healthy, resistance-trained men (age: 26 +/- 5 years, height: 173 +/- 6 cm) performed a back squat at their 10 repetition maximum (10RM) using 2 different ranges of motion (partial and full) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis, vastus medialis, rectus femoris, biceps femoris (BF), semitendinosus, erector spinae, soleus (SL), and gluteus maximus (GM). In general, muscle activity was highest during the partial back squat for GM (p = 0.004), BF (p = 0.009), and SL (p = 0.031) when compared with full-back squat. There was no significant difference for rating of perceived exertion between partial and full back squat exercise at 10RM (8 +/- 1 and 9 +/- 1, respectively). In conclusion, the range of motion in the back squat alters muscle activation of the prime mover (GM) and stabilizers (SL and BF) when performed with the load equated on a relative basis. Thus, the partial back squat maximizes the level of muscle activation of the GM and associated stabilizer muscles.
Palavras-chave
strength, performance, muscle
Referências
  1. Anderson K, 2005, CAN J APPL PHYSIOL, V30, P33
  2. Aspe RR, 2014, J STRENGTH COND RES, V28, P2827, DOI 10.1519/JSC.0000000000000462
  3. Blazevich AJ, 2002, J STRENGTH COND RES, V16, P298
  4. Bloomquist K, 2013, EUR J APPL PHYSIOL, V113, P2133, DOI 10.1007/s00421-013-2642-7
  5. Cardinale M., 2011, STRENGTH CONDITIONIN
  6. Caterisano A, 2002, J STRENGTH COND RES, V16, P428
  7. Contreras B, 2016, J APPL BIOMECH, V32, P16, DOI 10.1123/jab.2015-0113
  8. Demura S, 2010, J STRENGTH COND RES, V24, P2742, DOI 10.1519/JSC.0b013e3181e27386
  9. Dionisio VC, 2008, J ELECTROMYOGR KINES, V18, P134, DOI 10.1016/j.jelekin.2006.07.010
  10. Drinkwater EJ, 2007, INTJ SPORT PHYSIOL, V2, P400
  11. ELLIOTT BC, 1989, MED SCI SPORT EXER, V21, P450
  12. Eng J, 2003, RADIOLOGY, V227, P309, DOI 10.1148/radiol.2272012051
  13. Foster C, 2001, J STRENGTH COND RES, V15, P109, DOI 10.1519/00124278-200102000-00019
  14. Gardiner PF, 2011, ADV NEUROMUSCULAR EX
  15. Gorsuch J, 2013, J STRENGTH COND RES, V27, P2619, DOI 10.1519/JSC.0b013e31828055d5
  16. Gullett JC, 2009, J STRENGTH COND RES, V23, P284, DOI 10.1519/JSC.0b013e31818546bb
  17. Hermens HJ, 2000, J ELECTROMYOGR KINES, V10, P361, DOI 10.1016/S1050-6411(00)00027-4
  18. Kohler JM, 2010, J STRENGTH COND RES, V24, P313, DOI 10.1519/JSC.0b013e3181c8655a
  19. Lombard WP, 1903, AM PHYS ED REV, V9, P141, DOI 10.1080/23267224.1903.10649915
  20. Marchetti PH, 2016, J SPORTS MED, V2016, P1
  21. Marchetti PH, 2013, CPAQV J, V5, P1
  22. Maulder P, 2005, PHYS THER SPORT, V6, P74, DOI 10.1016/j.ptsp.2005.01.001
  23. McBride JM, 2006, J STRENGTH COND RES, V20, P915
  24. McBride JM, 2010, INT J SPORT PHYSIOL, V5, P177
  25. McCaw ST, 1999, MED SCI SPORT EXER, V31, P428, DOI 10.1097/00005768-199903000-00012
  26. McKean MR, 2010, J STRENGTH COND RES, V24, P1671, DOI 10.1519/JSC.0b013e3181d8eb4e
  27. McMahon GE, 2014, J STRENGTH COND RES, V28, P245, DOI 10.1519/JSC.0b013e318297143a
  28. Noorkoiv M, 2014, MED SCI SPORT EXER, V46, P1525, DOI 10.1249/MSS.0000000000000269
  29. Paoli A, 2009, J STRENGTH COND RES, V23, P246, DOI 10.1519/JSC.0b013e3181876811
  30. Prilutsky BI, 2000, MOTOR CONTROL, V4, P1
  31. Rhea MR, 2004, J STRENGTH COND RES, V18, P918, DOI 10.1519/00124278-200411000-00040
  32. Robertson DGE, 2008, J APPL BIOMECH, V24, P333
  33. Saeterbakken AH, 2016, J STRENGTH COND RES, V30, P945, DOI 10.1519/JSC.0000000000001178
  34. Schoenfeld BJ, 2010, J STRENGTH COND RES, V24, P3497, DOI 10.1519/JSC.0b013e3181bac2d7
  35. Tillaar RVD, 2013, J SPORTS SCI, V31, P1823
  36. Toutoungi DE, 2000, CLIN BIOMECH, V15, P176, DOI 10.1016/S0268-0033(99)00063-7
  37. van den Tillaar R, 2015, KINESIOL SLOVEN, V21, P15
  38. van den Tillaar R, 2014, J HUM KINET, V42, P63, DOI 10.2478/hukin-2014-0061
  39. Van den Tillaar R, 2012, J STRENGTH COND RES, V26, P2962, DOI 10.1519/JSC.0b013e3182443430
  40. Worrell TW, 2001, J ORTHOP SPORT PHYS, V31, P730