Subtle Thyroid Dysfunction Is Not Associated with Cognitive Decline: Results from the ELSA-Brasil

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
IOS PRESS
Citação
JOURNAL OF ALZHEIMERS DISEASE, v.81, n.4, p.1529-1540, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Subtle thyroid alterations have a controversial role in cognition. Objective: We investigated the longitudinal association of baseline thyroid function, thyrotropin (TSH), and thyroxine (FT4) levels with cognitive performance after 4 years of follow-up in middle-aged and older adults without overt thyroid dysfunction. Methods: We included 4,473 individuals, age >= 55 years at the second study wave, without overt thyroid dysfunction at baseline. Individuals were divided according to thyroid function and TSH and FT4 tertiles. Cognition was assessed at baseline and after 4 years of follow-up by the word recall (DWR), semantic verbal fluency (SVF), and trail making (TMT) tests. The longitudinal association of thyroid function and TSH and FT4 tertiles with cognitive performance was investigated using generalized estimating equations adjusted for sociodemographic characteristics, lifestyle, cardiovascular risk factors and depression. Results: There was no longitudinal association of thyroid function and TSH and FT4 baseline levels with performance on the cognitive tests. However, there was a baseline cross-sectional U-shaped association of FT4 tertiles with poorer performance in the SVF (first FT4 tertile: beta = -0.11, 95% CI = -0.17; -0.04; third FT4 tertile: beta = -0.10, 95% CI = -0.17; -0.04) and of the third FT4 tertile with poorer performance in the DWR (beta = -0.09, 95% CI = -0.16; -0.02). Conclusion: Thyroid function and hormone levels were not associated with cognitive decline during 4 years of follow-up in middle-aged and older adults without overt thyroid dysfunction. Future studies with longer follow-up could clarify the implications of subtle thyroid alterations in cognition.
Palavras-chave
Cognition, free thyroxine, older adults, thyroid function, thyrotropin
Referências
  1. Annerbo Sylvia, 2013, ISRN Endocrinol, V2013, P856017, DOI 10.1155/2013/856017
  2. Aquino EML, 2012, AM J EPIDEMIOL, V175, P315, DOI 10.1093/aje/kwr294
  3. Arvanitakis Z, 2019, JAMA-J AM MED ASSOC, V322, P1589, DOI 10.1001/jama.2019.4782
  4. Aubert CE, 2017, CLIN ENDOCRINOL, V87, P617, DOI 10.1111/cen.13458
  5. Bensenor IM, 2010, BMC PUBLIC HEALTH, V10, DOI 10.1186/1471-2458-10-298
  6. Bertola L, 2021, BRAZ J PSYCHIAT, V43, P254, DOI 10.1590/1516-4446-2020-0978
  7. Bertolucci PHF, 2001, ARQ NEURO-PSIQUIAT, V59, P532, DOI 10.1590/S0004-282X2001000400009
  8. Booth T, 2013, PSYCHONEUROENDOCRINO, V38, P597, DOI 10.1016/j.psyneuen.2012.07.018
  9. Calamia M, 2012, CLIN NEUROPSYCHOL, V26, P543, DOI 10.1080/13854046.2012.680913
  10. Cappola AR, 2015, J CLIN ENDOCR METAB, V100, P1088, DOI 10.1210/jc.2014-3586
  11. Chaker L, 2016, NEUROLOGY, V87, P1688, DOI 10.1212/WNL.0000000000003227
  12. Chelune GJ, 2013, HDB NEUROPSYCHOLOGY, P43, DOI 10.1007/978-1-4614-3106-0
  13. Craig CL, 2003, MED SCI SPORT EXER, V35, P1381, DOI 10.1249/01.MSS.0000078924.61453.FB
  14. Passos VMD, 2014, SAO PAULO MED J, V132, P170, DOI 10.1590/1516-3180.2014.1323646
  15. de Jong FJ, 2006, J CLIN ENDOCR METAB, V91, P2569, DOI 10.1210/jc.2006-0449
  16. de Jong FJ, 2009, NEUROBIOL AGING, V30, P600, DOI 10.1016/j.neurobiolaging.2007.07.019
  17. Forti P, 2012, GERONTOLOGY, V58, P41, DOI 10.1159/000324522
  18. George KM, 2019, J ENDOCRINOL METAB, V9, P82, DOI 10.14740/jem588
  19. GREENLIEF CL, 1985, PERCEPT MOTOR SKILL, V61, P1283, DOI 10.2466/pms.1985.61.3f.1283
  20. Gussekloo J, 2004, JAMA-J AM MED ASSOC, V292, P2591, DOI 10.1001/jama.292.21.2591
  21. Hogervorst E, 2008, PSYCHONEUROENDOCRINO, V33, P1013, DOI 10.1016/j.psyneuen.2008.05.008
  22. Jones S, 2006, CORTEX, V42, P347, DOI 10.1016/S0010-9452(08)70361-7
  23. Juarez-Cedillo T, 2017, J ENDOCRINOL INVEST, V40, P945, DOI 10.1007/s40618-017-0654-6
  24. Kalmijn S, 2000, CLIN ENDOCRINOL, V53, P733, DOI 10.1046/j.1365-2265.2000.01146.x
  25. Kolen MJ, 2014, TEST EQUATING SCALIN, V3th
  26. Leng O, 2019, THYROID RES, V12, DOI 10.1186/s13044-019-0063-3
  27. Livingston G, 2020, LANCET, V396, P413, DOI 10.1016/S0140-6736(20)30367-6
  28. Moon JH, 2014, J CLIN ENDOCR METAB, V99, P424, DOI 10.1210/jc.2013-3385
  29. Naghavi M, 2019, BMJ-BRIT MED J, V364, DOI 10.1136/bmj.l94
  30. Nunes M.A.A., 2011, REV HCPA PORTO ALEGR, V31, P487
  31. Rawlings AM, 2014, ANN INTERN MED, V161, P785, DOI 10.7326/M14-0737
  32. Salthouse TA, 2004, DEV PSYCHOL, V40, P813, DOI 10.1037/0012-1649.40.5.813
  33. Samuels MH, 2016, THYROID, V26, P1185, DOI 10.1089/thy.2016.0104
  34. Schmidt MI, 2015, INT J EPIDEMIOL, V44, P68, DOI 10.1093/ije/dyu027
  35. Sperling RA, 2011, ALZHEIMERS DEMENT, V7, P280, DOI 10.1016/j.jalz.2011.03.003
  36. Szlejf C, 2018, PSYCHONEUROENDOCRINO, V87, P152, DOI 10.1016/j.psyneuen.2017.10.017
  37. Tan ZS, 2008, ARCH INTERN MED, V168, P1514, DOI 10.1001/archinte.168.14.1514
  38. van Osch LADM, 2004, NEUROLOGY, V62, P1967, DOI 10.1212/01.WNL.0000128134.84230.9F
  39. Villanueva I, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/218145
  40. Volpato S, 2002, NEUROLOGY, V58, P1055, DOI 10.1212/WNL.58.7.1055
  41. Wijsman LW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059199
  42. World Health Organization, 2015, EP IMP DEM CURR STAT EP IMP DEM CURR STAT
  43. Yamamoto N, 2012, GERIATR GERONTOL INT, V12, P164, DOI 10.1111/j.1447-0594.2011.00727.x
  44. Yeap BB, 2012, J CLIN ENDOCR METAB, V97, pE2230, DOI 10.1210/jc.2012-2108