deltaXpress (ΔXpress): a tool for mapping differentially correlated genes using single-cell qPCR data

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
BMC BIOINFORMATICS, v.24, n.1, article ID 402, 18p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundHigh-throughput experiments provide deep insight into the molecular biology of different species, but more tools need to be developed to handle this type of data. At the transcriptomics level, quantitative Polymerase Chain Reaction technology (qPCR) can be affordably adapted to produce high-throughput results through a single-cell approach. In addition to comparative expression profiles between groups, single-cell approaches allow us to evaluate and propose new dependency relationships among markers. However, this alternative has not been explored before for large-scale qPCR-based experiments.ResultsHerein, we present deltaXpress (Delta Xpress), a web app for analyzing data from single-cell qPCR experiments using a combination of HTML and R programming languages in a friendly environment. This application uses cycle threshold (Ct) values and categorical information for each sample as input, allowing the best pair of housekeeping genes to be chosen to normalize the expression of target genes. Delta Xpress emulates a bulk analysis by observing differentially expressed genes, but in addition, it allows the discovery of pairwise genes differentially correlated when comparing two experimental conditions. Researchers can download normalized data or use subsequent modules to map differentially correlated genes, perform conventional comparisons between experimental groups, obtain additional information about their genes (gene glossary), and generate ready-to-publication images (600 dots per inch).Conclusions Delta Xpress web app is freely available to non-commercial users at https://alexismurillo.shinyapps.io/dXpress/ and can be used for different experiments in all technologies involving qPCR with at least one housekeeping region.
Palavras-chave
Gene expression, qPCR, Shiny, Gene correlation, Single-cell analysis
Referências
  1. Agapito G, 2019, METHODS MOL BIOL, V1986, P267, DOI 10.1007/978-1-4939-9442-7_13
  2. Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496
  3. BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
  4. Benson DA, 2007, NUCLEIC ACIDS RES, V35, pD21, DOI [10.1093/nar/gks1195, 10.1093/nar/gkw1070, 10.1093/nar/gkl986, 10.1093/nar/gkp1024, 10.1093/nar/gkx1094, 10.1093/nar/gkn723, 10.1093/nar/gkr1202, 10.1093/nar/gkq1079]
  5. Cirillo D, 2019, CURR OPIN BIOTECH, V58, P161, DOI 10.1016/j.copbio.2019.03.004
  6. Cunningham F, 2022, NUCLEIC ACIDS RES, V50, pD988, DOI 10.1093/nar/gkab1049
  7. Ekiz HA, 2020, BMC BIOINFORMATICS, V21, DOI 10.1186/s12859-020-3538-2
  8. Flatschacher D, 2022, BMC BIOINFORMATICS, V23, DOI 10.1186/s12859-022-04823-7
  9. Furuya TK, 2021, CANCERS, V13, DOI 10.3390/cancers13194745
  10. Gong HB, 2018, METHODS MOL BIOL, V1783, P193, DOI 10.1007/978-1-4939-7834-2_10
  11. Graham JW, 2009, ANNU REV PSYCHOL, V60, P549, DOI 10.1146/annurev.psych.58.110405.085530
  12. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  13. Maussion G, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99727-6
  14. Murta CB, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23137103
  15. Olaechea-Lázaro S, 2021, BMC BIOINFORMATICS, V22, DOI 10.1186/s12859-021-04392-1
  16. Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
  17. Poulin JF, 2016, NAT NEUROSCI, V19, P1131, DOI 10.1038/nn.4366
  18. Quigley DA, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-1-r5
  19. Stelzer G., 2016, Curr Protoc Bioinformatics, V54, P1, DOI [10.1002/cpbi.5, DOI 10.1002/CPBI.5]
  20. Sterne JAC, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2393
  21. Tripathi R, 2016, FRONT LIFE SCI, V9, P119, DOI 10.1080/21553769.2016.1178180
  22. Trivedi S, 2015, VACCINE, V33, P7315, DOI 10.1016/j.vaccine.2015.10.085
  23. Tsherniak A, 2017, CELL, V170, P564, DOI 10.1016/j.cell.2017.06.010
  24. Wong T, 2017, BIOINFORMATICS, V33, P1723, DOI 10.1093/bioinformatics/btx038
  25. Zanardi N, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-53155-9