Impact of Tumor Removal on the Systemic Oxidative Profile of Patients With Breast Cancer Discloses Lipid Peroxidation at Diagnosis as a Putative Marker of Disease Recurrence

Carregando...
Imagem de Miniatura
Citações na Scopus
25
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
CIG MEDIA GROUP, LP
Autores
HERRERA, Ana Cristina S.
CAMPOS, Fernanda C.
VERENITACH, Beatriz D.
LEMOS, Lauana T.
ARANOME, Adrian M. F.
OLIVEIRA, Sayonara R.
CECCHINI, Alessandra L.
SIMAO, Andrea Name C.
ABDELHAY, Eliana
Citação
CLINICAL BREAST CANCER, v.14, n.6, p.451-459, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study highlights the systemic oxidative changes that occur in women with invasive breast cancer at diagnosis that are indicative of disease recurrence in a 5-year follow-up, before the primary tumor removal. Background: Recent studies have suggested a regulatory role for some of the metabolites derived from oxidative stress in breast cancer. In this way, cancer-induced oxidative changes could modify the breast environment and potentially trigger systemic responses that may affect disease prognosis and recurrence. In this study, we investigated the systemic oxidative profile of women with early breast cancer bearing the primary tumor and after tumor withdrawal, and its long-term implications. Patients and Methods: Plasma samples were collected at diagnosis, and the systemic oxidative profile was determined by evaluating the lipid peroxidation, total antioxidant capacity of plasma (TRAP), malondialdehyde (MDA), protein carbonylation, and hydroperoxides. Nitric oxide, vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha (TNF-alpha) levels were further measured. We also evaluated the impact of the oxidative profiling at diagnosis on disease recurrence in a 5-year follow-up. Results: Enhanced oxidative stress was detected in patients bearing the primary tumors, characterized by high lipid peroxidation, TRAP consumption, high carbonyl content, and elevated VEGF and TNF-a levels. After tumor removal, the systemic oxidative status presented attenuation in lipid peroxidation, MDA, VEGF, and TNF-a. The 5-year recurrence analysis indicated that all patients who recidivated presented high levels of lipid peroxidation measured by chemiluminescence at diagnosis. Conclusions: Our data suggest that the presence of the primary tumor is indicative of the systemic pro-oxidant status of breast cancer and demonstrates a role for lipid peroxidation in disease recurrence, highlighting the need for a metabolic follow-up of patients with cancer at diagnosis before tumor removal.
Palavras-chave
Breast cancer, Lipid peroxidation, Oxidative stress, Tumor resection
Referências
  1. Chuang CH, 2010, MUTAGENESIS, V25, P71, DOI 10.1093/mutage/gep047
  2. Daniel WW., 1999, BIOSTATISTICS FDN AN
  3. De Rossi T, 2009, APPL CANC RES, V29, P150
  4. De Boniface J, 2012, INT J CANCER, V131, P129, DOI 10.1002/ijc.26355
  5. Franco R, 2008, CANCER LETT, V266, P6, DOI 10.1016/j.canlet.2008.02.026
  6. Gago-Dominguez M, 2005, CANCER EPIDEM BIOMAR, V14, P2829, DOI 10.1158/1055-9965.EPI-05-0015
  7. Gago-Dominguez M, 2007, BREAST CANCER RES, V9, DOI 10.1186/bcr1628
  8. Gast MCW, 2011, J CANCER RES CLIN, V137, P1773, DOI 10.1007/s00432-011-1055-4
  9. Ge YL, 2009, INT IMMUNOPHARMACOL, V9, P389, DOI 10.1016/j.intimp.2008.11.020
  10. Halliwell B, 2007, BIOCHEM J, V401, P1, DOI 10.1042/BJ20061131
  11. Halliwell B., 2007, FREE RADICALS BIOL M
  12. Halliwell B, 1993, DNA FREE RADICALS
  13. HIETANEN E, 1994, EUR J CLIN NUTR, V48, P575
  14. Jing Y, 2011, TOXICOL SCI, V125, P10
  15. Kim JH, 2011, APOPTOSIS, V16, P696, DOI 10.1007/s10495-011-0605-1
  16. Lei L, 2011, ANAT REC, V294, P941, DOI 10.1002/ar.21399
  17. Lozovoy MAB, 2011, LUPUS, V20, P1250, DOI 10.1177/0961203311411350
  18. Madian AG, 2010, J PROTEOME RES, V9, P3766, DOI 10.1021/pr1002609
  19. Madian AG, 2011, J PROTEOME RES, V10, P3959, DOI 10.1021/pr200140x
  20. Madian AG, 2011, ANAL CHEM, V83, P9328, DOI 10.1021/ac201856g
  21. Manello F, 2007, INT J CANCER, V120, P1971
  22. Mannello F, 2013, BMC CANCER, V13, DOI 10.1186/1471-2407-13-344
  23. Mannello F, 2013, J INORG BIOCHEM, V128, P250, DOI 10.1016/j.jinorgbio.2013.07.003
  24. Mannello F, 2010, CLIN BREAST CANCER, V10, P238, DOI 10.3816/CBC.2010.n.032
  25. Mannello F, 2007, INT J CANCER, V120, P1971, DOI 10.1002/ijc.22522
  26. Mannello F, 2009, EXPERT REV PROTEOMIC, V6, P43, DOI 10.1586/14789450.6.1.43
  27. Menard S, 2003, LANCET, V362, P1503, DOI 10.1016/S0140-6736(03)14708-3
  28. Menard S, 2002, CLIN CANCER RES, V8, P520
  29. Nikki E., 2009, FREE RADICAL BIO MED, V47, P469
  30. Panis C, 2012, CANCER IMMUNOL IMMUN, V61, P481, DOI 10.1007/s00262-011-1117-0
  31. Panis C, 2012, BREAST CANCER RES TR, V133, P881, DOI 10.1007/s10549-011-1851-1
  32. Panis C, 2012, BREAST CANCER RES TR, V133, P89, DOI 10.1007/s10549-011-1693-x
  33. Prasad S, 2011, CANCER RES, V71, P538, DOI 10.1158/0008-5472.CAN-10-3121
  34. Selmeci L, 2006, FREE RADICAL RES, V40, P952, DOI 10.1080/10715760600818789
  35. Sidiqui RA, 2008, CHEM PHYS LIPIDS, V153, P47
  36. Sonmez B, 2011, J BUON, V16, P227
  37. Stoll BA, 2002, BRIT J NUTR, V87, P193, DOI [10.1079/BJNBJN2001512, 10.1079/BJN2002512]
  38. Victorino VJ, 2013, AGE, V35, P1411, DOI 10.1007/s11357-012-9431-9
  39. Victorino VJ, 2014, TUMOR BIOL, V35, P3025, DOI 10.1007/s13277-013-1391-x
  40. Villasenor A, 2014, CANCER EPIDEM BIOMAR, V23, P189, DOI 10.1158/1055-9965.EPI-13-0852
  41. Widschwendter M, 2002, ONCOGENE, V21, P5462, DOI 10.1038/sj.onc.1205606
  42. Wink DA, 1998, CARCINOGENESIS, V19, P711, DOI 10.1093/carcin/19.5.711
  43. ZAMBURLINI A, 1995, ANAL BIOCHEM, V232, P107, DOI 10.1006/abio.1995.9953