Skin fibrosis associated with keloid, scleroderma and Jorge Lobo's disease (lacaziosis): An immuno-histochemical study

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, v.103, n.6, p.234-244, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Fibrosis is a common pathophysiological response of many tissues and organs subjected to chronic injury. Despite the diverse aetiology of keloid, lacaziosis and localized scleroderma, the process of fibrosis is present in the pathogenesis of all of these three entities beyond other individual clinical and histological distinct characteristics. Fibrosis was studied in 20 samples each of these three chronic cutaneous inflammatory diseases. An immunohistochemical study was carried out to explore the presence of alpha-smooth muscle actin (alpha-SMA) and vimentin cytoskeleton antigens, CD31, CD34, Ki67, p16; CD105, CD163, CD206 and FOXP3 antigens; and the central fibrotic cytokine TGF-beta. Higher expression of vimentin in comparison to alpha-SMA in all three lesion types was found. CD31- and CD34-positive blood vessel endothelial cells were observed throughout the reticular dermis. Ki67 expression was low and almost absent in scleroderma. p16-positive levels were higher than ki67 and observed in reticular dermis of keloidal collagen in keloids, in collagen bundles in scleroderma and in the external layers of the granulomas in lacaziosis. The presence of alpha-actin positive cells and rarely CD34 positive cells, observed primarily in keloids, may be related to higher p16 antigen expression, a measure of cell senescence. Low FOXP3 expression was observed in all lesion types. CD105-positive cells were mainly found in perivascular tissue in close contact with the adventitia in keloids and scleroderma, while, in lacaziosis, these cells were chiefly observed in conjunction with collagen deposition in the external granuloma layer. We did not find high involvement of CD163 or CD206-positive cells in the fibrotic process. TGF-beta was notable only in keloid and lacaziosis lesions. In conclusion, we have suggested vimentin to be the main myofibroblast general marker of the fibrotic process in all three studied diseases, while endothelial-to-mesenchymal transition (EndoMT) and mesenchymal stem cells (MSCs) and M2 macrophages may not play an important role.
Palavras-chave
fibrosis, immunohistochemistry, keloid, lacaziosis, scleroderma
Referências
  1. Antiga E, 2010, BRIT J DERMATOL, V162, P1056, DOI 10.1111/j.1365-2133.2010.09633.x
  2. Blaszczyk M, 1996, CUTIS, V58, P141
  3. Careta MF, 2015, AN BRAS DERMATOL, V90, P62, DOI 10.1590/abd1806-4841.20152890
  4. Cheng F, 2016, P NATL ACAD SCI USA, V113, pE4320, DOI 10.1073/pnas.1519197113
  5. Chester D, 2017, MATRIX BIOL, V60-61, P124, DOI 10.1016/j.matbio.2016.08.004
  6. Claassen MAA, 2010, J HEPATOL, V52, P315, DOI 10.1016/j.jhep.2009.12.013
  7. Distler JHW, 2019, NAT REV RHEUMATOL, V15, P705, DOI 10.1038/s41584-019-0322-7
  8. Dong XL, 2013, BIOMED REP, V1, P833, DOI 10.3892/br.2013.169
  9. ESGLEYESRIBOT T, 1991, J AM ACAD DERMATOL, V25, P578, DOI 10.1016/S0190-9622(08)80421-5
  10. Forbes SJ, 2014, NAT MED, V20, P857, DOI 10.1038/nm.3653
  11. Friedman SL, 2004, NAT CLIN PRACT GASTR, V1, P98, DOI 10.1038/ncpgasthep0055
  12. Gordon S, 2017, BMC BIOL, V15, DOI 10.1186/s12915-017-0392-4
  13. Hynes RO, 2009, SCIENCE, V326, P1216, DOI 10.1126/science.1176009
  14. Kim JH, 2019, MOL CANCER, V18, DOI 10.1186/s12943-019-1110-3
  15. Lee JS, 2018, J EUR ACAD DERMATOL, V32, P2208, DOI 10.1111/jdv.15120
  16. Lim WC, 2019, J CELL BIOCHEM, V120, P9887, DOI 10.1002/jcb.28271
  17. Limandjaja GC, 2020, BRIT J DERMATOL, V182, P974, DOI 10.1111/bjd.18219
  18. Liu MG, 2016, CYTOKINE GROWTH F R, V28, P31, DOI 10.1016/j.cytogfr.2015.12.002
  19. Mack M, 2015, KIDNEY INT, V87, P297, DOI 10.1038/ki.2014.287
  20. Majesky MW, 2016, ARTERIOSCL THROM VAS, V36, pe82, DOI 10.1161/ATVBAHA.116.308261
  21. Murao N, 2014, EXP DERMATOL, V23, P266, DOI 10.1111/exd.12368
  22. Murray PJ, 2017, ANNU REV PHYSIOL, V79, P541, DOI 10.1146/annurev-physiol-022516-034339
  23. Ogawa R, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18030606
  24. Pakshir P, 2018, MATRIX BIOL, V68-69, P81, DOI 10.1016/j.matbio.2018.01.019
  25. Paniz-Mondolfi A, 2012, MYCOSES, V55, P298, DOI 10.1111/j.1439-0507.2012.02184.x
  26. Pattanaik D, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00272
  27. Quaresma JAS, 2015, MICROB PATHOGENESIS, V78, P29, DOI 10.1016/j.micpath.2014.11.013
  28. Rinkevich Y, 2015, SCIENCE, V348, DOI 10.1126/science.aaa2151
  29. Sahin MT, 2004, J EUR ACAD DERMATOL, V18, P204, DOI 10.1111/j.1468-3083.2004.00862.x
  30. Satoh T, 2017, NATURE, V541, P96, DOI 10.1038/nature20611
  31. SKOBIERANDA K, 1995, AM J DERMATOPATH, V17, P471, DOI 10.1097/00000372-199510000-00007
  32. Sommer A, 2006, J AM ACAD DERMATOL, V54, P227, DOI 10.1016/j.jaad.2005.10.020
  33. Taborda PR, 1999, J CLIN MICROBIOL, V37, P2031, DOI 10.1128/JCM.37.6.2031-2033.1999
  34. Walker JL, 2018, MOL BIOL CELL, V29, P1555, DOI 10.1091/mbc.E17-06-0364
  35. Wynn TA, 2008, J PATHOL, V214, P199, DOI 10.1002/path.2277
  36. Zhang GY, 2009, CURR OPIN ORGAN TRAN, V14, P40, DOI 10.1097/MOT.0b013e32831da83c
  37. Zuber JP, 2006, RHEUMATOLOGY, V45, P23, DOI 10.1093/rheumatology/kel285