TACR3 mutations disrupt NK3R function through distinct mechanisms in GnRH-deficient patients

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
FEDERATION AMER SOC EXP BIOL
Autores
NOEL, Sekoni D.
ABREU, Ana Paula
XU, Shuyun
MUYIDE, Titilayo
GIANETTI, Elena
CARROLL, Jessica
SEMINARA, Stephanie B.
CARROLL, Rona S.
Citação
FASEB JOURNAL, v.28, n.4, p.1924-1937, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Neurokinin B (NKB) and its G-protein-coupled receptor, NK3R, have been implicated in the neuroendocrine control of GnRH release; however, little is known about the structure-function relationship of this ligand-receptor pair. Moreover, loss-of-function NK3R mutations cause GnRH deficiency in humans. Using missense mutations in NK3R we previously identified in patients with GnRH deficiency, we demonstrate that Y256H and Y315C NK3R mutations in the fifth and sixth transmembrane domains (TM5 and TM6), resulted in reduced whole-cell (79.3 +/- 7.2%) or plasma membrane (67.3 +/- 7.3%) levels, respectively, compared with wild-type (WT) NK3R, with near complete loss of inositol phosphate (IP) signaling, implicating these domains in receptor trafficking, processing, and/or stability. We further demonstrate in a FRET-based assay that R295S NK3R, in the third intracellular loop (IL3), bound NKB but impaired dissociation of G(q)-protein subunits from the receptor compared with WT NK3R, which showed a 10.0 +/- 1.3% reduction in FRET ratios following ligand binding, indicating activation of G(q)-protein signaling. Interestingly, R295S NK3R, identified in the heterozygous state in a GnRH-deficient patient, also interfered with dissociation of G proteins and IP signaling from wild-type NK3R, indicative of dominant-negative effects. Collectively, our data illustrate roles for TM5 and TM6 in NK3R trafficking and ligand binding and for IL3 in NK3R signaling.-Noel, S. D., Abreu, A. P., Xu, S., Muyide, T., Gianetti, E., Tusset, C., Carroll, J., Latronico, A. C., Seminara, S. B., Carroll, R. S., Kaiser, U. B. TACR3 mutations disrupt NK3R function through distinct mechanisms in GnRH-deficient patients.
Palavras-chave
tachykinins, GPCR, hypogonadotropic hypogonadism, neurokinin B
Referências
  1. Achour L, 2008, TRENDS PHARMACOL SCI, V29, P528, DOI 10.1016/j.tips.2008.07.009
  2. Al-Salameh A, 2011, EUR J ENDOCRINOL, V165, P359, DOI 10.1530/EJE-11-0141
  3. Amstalden M, 2010, J NEUROENDOCRINOL, V22, P1, DOI 10.1111/j.1365-2826.2009.01930.x
  4. Bai M, 1998, J BIOL CHEM, V273, P23605, DOI 10.1074/jbc.273.36.23605
  5. Bai M, 1999, P NATL ACAD SCI USA, V96, P2834, DOI 10.1073/pnas.96.6.2834
  6. Bedecarrats GY, 2003, MOL CELL ENDOCRINOL, V205, P51, DOI 10.1016/S0303-7207(03)00201-6
  7. Billings HJ, 2010, ENDOCRINOLOGY, V151, P3836, DOI 10.1210/en.2010-0174
  8. Bouschet T, 2005, J CELL SCI, V118, P4709, DOI 10.1242/jcs.02598
  9. Cezanne L, 2004, J BIOL CHEM, V279, P45057, DOI 10.1074/jbc.M404811200
  10. CHANG MM, 1971, NATURE-NEW BIOL, V232, P86
  11. Chen SH, 2000, EMBO J, V19, P4265, DOI 10.1093/emboj/19.16.4265
  12. CHENG SH, 1990, CELL, V63, P827, DOI 10.1016/0092-8674(90)90148-8
  13. Christopoulos A, 2003, J BIOL CHEM, V278, P3293, DOI 10.1074/jbc.C200629200
  14. Conn PM, 2009, MOL CELL ENDOCRINOL, V299, P137, DOI 10.1016/j.mce.2008.10.051
  15. Corander MP, 2010, J NEUROENDOCRINOL, V22, P181, DOI 10.1111/j.1365-2826.2009.01951.x
  16. Dawson LA, 2010, CURR PHARM DESIGN, V16, P344
  17. DORLEANSJUSTE P, 1986, EUR J PHARMACOL, V125, P37, DOI 10.1016/0014-2999(86)90081-6
  18. Eghlidi DH, 2010, ENDOCRINOLOGY, V151, P3783, DOI 10.1210/en.2010-0198
  19. Ellgaard L, 1999, SCIENCE, V286, P1882, DOI 10.1126/science.286.5446.1882
  20. Ferguson SSG, 1998, LIFE SCI, V62, P1561, DOI 10.1016/S0024-3205(98)00107-6
  21. Francou B, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025614
  22. FRANKE RR, 1988, J BIOL CHEM, V263, P2119
  23. Ganjiwale AD, 2011, J CHEM INF MODEL, V51, P2932, DOI 10.1021/ci2000264
  24. Gardner TA, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0166
  25. Gaskins GT, 2013, ENDOCRINOLOGY, V154, P3984, DOI 10.1210/en.2013-1479
  26. GERARD NP, 1990, J BIOL CHEM, V265, P20455
  27. GETHER U, 1993, J BIOL CHEM, V268, P7893
  28. Gianetti E, 2010, J CLIN ENDOCR METAB, V95, P2857, DOI 10.1210/jc.2009-2320
  29. Glidewell-Kenney CA, 2013, MOL ENDOCRINOL, V27, P437, DOI 10.1210/me.2012-1271
  30. Goodman RL, 2007, ENDOCRINOLOGY, V148, P5752, DOI 10.1210/en.2007-0961
  31. GOW A, 1994, J NEUROSCI RES, V37, P574, DOI 10.1002/jnr.490370504
  32. Guran T, 2009, J CLIN ENDOCR METAB, V94, P3633, DOI 10.1210/jc.2009-0551
  33. Hebert DN, 2007, PHYSIOL REV, V87, P1377, DOI 10.1152/physrev.00050.2006
  34. Horwich A, 2002, J CLIN INVEST, V110, P1221, DOI 10.1172/JCI200216781
  35. Janovick JA, 2009, MOL ENDOCRINOL, V23, P157, DOI 10.1210/me.2008-0384
  36. Kallo I, 2012, J NEUROENDOCRINOL, V24, P464, DOI 10.1111/j.1365-2826.2011.02262.x
  37. KANGAWA K, 1983, BIOCHEM BIOPH RES CO, V114, P533, DOI 10.1016/0006-291X(83)90813-6
  38. Katritch V, 2013, ANNU REV PHARMACOL, V53, P531, DOI 10.1146/annurev-pharmtox-032112-135923
  39. Khawaja AM, 1996, INT J BIOCHEM CELL B, V28, P721, DOI 10.1016/1357-2725(96)00017-9
  40. Kinsey-Jones JS, 2012, ENDOCRINOLOGY, V153, P307, DOI 10.1210/en.2011-1641
  41. Krajewski SJ, 2005, J COMP NEUROL, V489, P372, DOI 10.1002/cne.20626
  42. Kung TT, 2004, PHARMACOL RES, V50, P611, DOI 10.1016/j.phrs.2004.07.002
  43. Maya-Núñez Guadalupe, 2012, Subcell Biochem, V63, P263, DOI 10.1007/978-94-007-4765-4_14
  44. McConalogue K, 1999, J BIOL CHEM, V274, P16257, DOI 10.1074/jbc.274.23.16257
  45. McLatchie LM, 1998, NATURE, V393, P333
  46. Mizrachi D, 2004, MOL ENDOCRINOL, V18, P1768, DOI 10.1210/me.2003-0406
  47. Morello JP, 2000, J CLIN INVEST, V105, P887, DOI 10.1172/JCI8688
  48. Navarro VM, 2011, AM J PHYSIOL-ENDOC M, V300, pE202, DOI 10.1152/ajpendo.00517.2010
  49. Navarro VM, 2011, ENDOCRINOLOGY, V152, P4265, DOI 10.1210/en.2011-1143
  50. Navarro VM, 2009, J NEUROSCI, V29, P11859, DOI 10.1523/JNEUROSCI.1569-09.2009
  51. NAWA H, 1984, LIFE SCI, V34, P1153, DOI 10.1016/0024-3205(84)90087-0
  52. Ng PC, 2001, GENOME RES, V11, P863, DOI 10.1101/gr.176601
  53. Nordquist RE, 2008, PSYCHOPHARMACOLOGY, V198, P211, DOI 10.1007/s00213-008-1119-6
  54. OSAKADA F, 1986, EUR J PHARMACOL, V120, P201, DOI 10.1016/0014-2999(86)90541-8
  55. Page NM, 2000, NATURE, V405, P797
  56. Peeters MC, 2011, FASEB J, V25, P632, DOI 10.1096/fj.10-164319
  57. Petaja-Repo UE, 2002, EMBO J, V21, P1628, DOI 10.1093/emboj/21.7.1628
  58. Pidasheva S, 2004, HUM MUTAT, V24, P107, DOI 10.1002/humu.20067
  59. Punn A, 2012, J BIOL CHEM, V287, P8974, DOI 10.1074/jbc.M111.272161
  60. Ramaswamy S, 2010, ENDOCRINOLOGY, V151, P4494, DOI 10.1210/en.2010-0223
  61. Rance NE, 2009, PEPTIDES, V30, P111, DOI 10.1016/j.peptides.2008.05.016
  62. Rance NE, 2010, BRAIN RES, V1364, P116, DOI 10.1016/j.brainres.2010.08.059
  63. Rasmussen SGF, 2011, NATURE, V477, P549, DOI 10.1038/nature10361
  64. Saito H, 2004, CELL, V119, P679, DOI 10.1016/j.cell.2004.11.021
  65. Sandoval-Guzman T, 2004, BRAIN RES, V1026, P307, DOI 10.1016/j.brainres.2004.08.026
  66. Schliefenbaum J., 2008, BIOPHYS J, V94, P665
  67. Schmidlin F, 2003, AM J PHYSIOL-CELL PH, V285, pC945, DOI 10.1152/ajpcell.00541.2002
  68. Severini C, 2002, PHARMACOL REV, V54, P285, DOI 10.1124/pr.54.2.285
  69. Siffroi-Fernandez S, 2002, EUR J BIOCHEM, V269, P4930, DOI 10.1046/j.1432-1033.2002.03192.x
  70. Simonsen KB, 2010, CURR OPIN DRUG DISC, V13, P379
  71. Siuciak JA, 2007, PSYCHOPHARMACOLOGY, V194, P185, DOI 10.1007/s00213-007-0828-6
  72. Sunyaev S, 2001, HUM MOL GENET, V10, P591, DOI 10.1093/hmg/10.6.591
  73. TAKAHASHI K, 1992, EUR J BIOCHEM, V204, P1025, DOI 10.1111/j.1432-1033.1992.tb16724.x
  74. TAKEDA Y, 1991, BIOCHEM BIOPH RES CO, V179, P1232, DOI 10.1016/0006-291X(91)91704-G
  75. Tan CM, 2004, ANNU REV PHARMACOL, V44, P559, DOI 10.1146/annurev.pharmtox.44.101802.121558
  76. Tao YX, 2006, PHARMACOL THERAPEUT, V111, P949, DOI 10.1016/j.pharmthera.2006.02.008
  77. Thomas PD, 2003, NUCLEIC ACIDS RES, V31, P334, DOI 10.1093/nar/gkg115
  78. Todman MG, 2005, NEUROSCIENCE, V132, P703, DOI 10.1016/j.neuroscience.2005.01.035
  79. Topaloglu AK, 2009, NAT GENET, V41, P354, DOI 10.1038/ng.306
  80. Tsai B, 2002, NAT REV MOL CELL BIO, V3, P246, DOI 10.1038/nrm780
  81. Wacker JL, 2008, J BIOL CHEM, V283, P31068, DOI 10.1074/jbc.M805251200
  82. Wakabayashi Y, 2010, J NEUROSCI, V30, P3124, DOI 10.1523/JNEUROSCI.5848-09.2010
  83. Ward BK, 2006, CLIN ENDOCRINOL, V64, P580, DOI 10.1111/j.1365-2265.2006.02512.x
  84. Wess J, 1998, PHARMACOL THERAPEUT, V80, P231, DOI 10.1016/S0163-7258(98)00030-8
  85. Yang JJ, 2012, ENDOCRINOLOGY, V153, P1498, DOI 10.1210/en.2011-1949
  86. Young J, 2010, J CLIN ENDOCR METAB, V95, P2287, DOI 10.1210/jc.2009-2600
  87. Zhang Y, 2009, PROTEINS, V77, P100, DOI 10.1002/prot.22588