Establishment of a 7-gene expression panel to improve the prognosis classification of gastric cancer patients

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
SOTOMAYOR, Mariana Belen Velasquez
SEGURA, Anthony Vladimir Campos
MONTALVA, Ricardo Jose Asurza
MARIN-SANCHEZ, Obert
Citação
FRONTIERS IN GENETICS, v.14, article ID 1206609, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Gastric cancer (GC) ranks fifth in incidence and fourth in mortality worldwide. The high death rate in patients with GC requires new biomarkers for improving survival estimation. In this study, we performed a transcriptome-based analysis of five publicly available cohorts to identify genes consistently associated with prognosis in GC. Based on the ROC curve, patients were categorized into high and low-expression groups for each gene using the best cutoff point. Genes associated with survival (AUC > 0.5; univariate and multivariate Cox regressions, p < 0.05) were used to model gene expression-based scores by weighted sum using the pooled Cox beta regression coefficients. Cox regression (p < 0.05), AUC > 0.5, sensitivity > 0.5, and specificity > 0.5 were considered to identify the best scores. Gene set enrichment analysis (KEGG, REACTOME, and Gene Ontology databases), as well as microenvironment composition and stromal cell signatures prediction (CIBERSORT, EPIC, xCell, MCP-counter, and quanTIseq web tools) were performed. We found 11 genes related to GC survival in the five independent cohorts. Then, we modeled scores by calculating all possible combinations between these genes. Among the 2,047 scores, we identified a panel based on the expression of seven genes. It was named GES7 and is composed of CCDC91, DYNC1I1, FAM83D, LBH, SLITRK5, WTIP, and NAP1L3 genes. GES7 features were validated in two independent external cohorts. Next, GES7 was found to recategorize patients from AJCC TNM stages into a best-fitted prognostic group. The GES7 was associated with activation of the TGF-beta pathway and repression of anticancer immune cells. Finally, we compared the GES7 with 30 previous proposed scores, finding that GES7 is one of the most robust scores. As a result, the GES7 is a reliable gene-expression-based signature to improve the prognosis estimation in GC.
Palavras-chave
prognosis, gastric cancer, score, risk classification, gene expression
Referências
  1. Abdel-Rahman O, 2018, EXPERT REV GASTROENT, V12, P525, DOI 10.1080/17474124.2018.1413348
  2. Amin MB, 2017, CA-CANCER J CLIN, V67, P93, DOI 10.3322/caac.21388
  3. Aran D, 2017, GENOME BIOL, V18, DOI 10.1186/s13059-017-1349-1
  4. Balkwill FR, 2012, J CELL SCI, V125, P5591, DOI 10.1242/jcs.116392
  5. Bass AJ, 2014, NATURE, V513, P202, DOI 10.1038/nature13480
  6. Becht E, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-1070-5
  7. Bechter OE, 2016, CANCER CHEMOTH PHARM, V78, P83, DOI 10.1007/s00280-016-3056-0
  8. Buccarelli M, 2021, J EXP CLIN CANC RES, V40, DOI 10.1186/s13046-021-02031-4
  9. Chang JJ, 2022, WORLD J GASTRO ONCOL, V14, P478, DOI 10.4251/wjgo.v14.i2.478
  10. Chen CN, 2005, J CLIN ONCOL, V23, P7286, DOI 10.1200/JCO.2004.00.2253
  11. Cheong JH, 2018, LANCET ONCOL, V19, P629, DOI 10.1016/S1470-2045(18)30108-6
  12. Chonov Dimitur Chavdarov, 2019, Open Access Maced J Med Sci, V7, P2391, DOI 10.3889/oamjms.2019.589
  13. Colak S, 2017, TRENDS CANCER, V3, P56, DOI 10.1016/j.trecan.2016.11.008
  14. Cristescu R, 2015, NAT MED, V21, P449, DOI 10.1038/nm.3850
  15. Deng MM, 2018, CELL PHYSIOL BIOCHEM, V47, P223, DOI 10.1159/000489801
  16. Dikken JL, 2012, ANN SURG ONCOL, V19, P2443, DOI 10.1245/s10434-012-2403-6
  17. Finotello F, 2019, GENOME MED, V11, DOI 10.1186/s13073-019-0638-6
  18. Gong LB, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.00491
  19. Hashemzadeh Kamelia, 2019, Middle East J Dig Dis, V11, P5, DOI 10.15171/mejdd.2018.122
  20. Henke E, 2020, FRONT MOL BIOSCI, V6, DOI 10.3389/fmolb.2019.00160
  21. Heshmati Y, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-29518-z
  22. Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186
  23. Huang ML, 2017, ONCOTARGET, V8, P74479, DOI 10.18632/oncotarget.20157
  24. Jhunjhunwala S, 2021, NAT REV CANCER, V21, P298, DOI 10.1038/s41568-021-00339-z
  25. Ji X, 2018, GASTRIC CANCER, V21, P643, DOI 10.1007/s10120-017-0779-5
  26. Kim DG, 2019, J GASTRIC CANCER, V19, P427, DOI 10.5230/jgc.2019.19.e38
  27. Kupfer SS, 2017, GASTROENTEROLOGY, V152, P926, DOI 10.1053/j.gastro.2017.02.026
  28. Li CM, 2020, CANCER CELL INT, V20, DOI 10.1186/s12935-020-1156-8
  29. Li JA, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.615834
  30. Liu H, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.641381
  31. Liu JY, 2018, AM J TRANSL RES, V10, P292
  32. Liu YF, 2020, J TRANSL MED, V18, DOI 10.1186/s12967-020-02366-0
  33. Lou SH, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.719628
  34. Lu J, 2017, EJSO-EUR J SURG ONC, V43, P2349, DOI 10.1016/j.ejso.2017.09.001
  35. Lv S, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-79321-y
  36. Malcikova J, 2018, LEUKEMIA, V32, P1070, DOI 10.1038/s41375-017-0007-7
  37. Marrelli D, 2012, ANN SURG, V255, P486, DOI 10.1097/SLA.0b013e3182389b1a
  38. McGranahan N, 2012, EMBO REP, V13, P528, DOI 10.1038/embor.2012.61
  39. Newman AM, 2015, NAT METHODS, V12, P453, DOI [10.1038/nmeth.3337, 10.1038/NMETH.3337]
  40. Oh SC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-04179-8
  41. Ooi CH, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000676
  42. Park S, 2016, SCI REP-UK, V6, DOI 10.1038/srep34822
  43. Qu Y, 2010, BREAST CANCER RES TR, V121, P311, DOI 10.1007/s10549-009-0470-6
  44. Racle J, 2020, METHODS MOL BIOL, V2120, P233, DOI 10.1007/978-1-0716-0327-7_17
  45. Rothwell JA, 2022, CLIN GASTROENTEROL H, V20, pE1338, DOI 10.1016/j.cgh.2021.10.016
  46. Shi JN, 2018, ONCOL LETT, V15, P9802, DOI 10.3892/ol.2018.8577
  47. Shu P, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3235-3
  48. Sung H., 2021, CA-CANCER J CLIN, V71, P209, DOI [DOI 10.3322/caac.21660, 10.3322/caac.21660]
  49. Szász AM, 2016, ONCOTARGET, V7, P49322, DOI 10.18632/oncotarget.10337
  50. Tolaney S, 2015, BREAST CANCER RES TR, V149, P151, DOI 10.1007/s10549-014-3248-4
  51. Turgeon MO, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00015
  52. Wang FR, 2019, CANCER MANAG RES, V11, P6775, DOI 10.2147/CMAR.S203082
  53. Wang P, 2016, ONCOTARGET, V7, P55343, DOI 10.18632/oncotarget.10533
  54. Wang XH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07604-y
  55. Wu ZQ, 2019, MOL ONCOL, V13, P1059, DOI 10.1002/1878-0261.12462
  56. Yan XS, 2022, SCAND J GASTROENTERO, V57, P1344, DOI 10.1080/00365521.2022.2088246
  57. Yao DH, 2020, THERANOSTICS, V10, P9741, DOI 10.7150/thno.46913
  58. Yoon HM, 2012, J AM COLL SURGEONS, V214, P88, DOI 10.1016/j.jamcollsurg.2011.09.018
  59. Yu RX, 2019, PEERJ, V7, DOI 10.7717/peerj.6885
  60. Zeng C, 2016, APOPTOSIS, V21, P1, DOI 10.1007/s10495-015-1188-z
  61. Zhang B, 2023, J MULTIDISCIP HEALTH, V16, P1779, DOI 10.2147/JMDH.S410301
  62. Zhang TH, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.719613
  63. Zhu LH, 2020, EBIOMEDICINE, V61, DOI 10.1016/j.ebiom.2020.103023