Enrichment of apolipoprotein A-IV and apolipoprotein D in the HDL proteome is associated with HDL functions in diabetic kidney disease without dialysis

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
SILVA, Amanda R. M.
SAWADA, Maria I. B. A. C.
QUEIROZ, Marcia S.
RONSEIN, Graziella E.
Citação
LIPIDS IN HEALTH AND DISEASE, v.19, n.1, article ID 205, 14p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and aims Diabetic kidney disease (DKD) is associated with lipid derangements that worsen kidney function and enhance cardiovascular (CVD) risk. The management of dyslipidemia, hypertension and other traditional risk factors does not completely prevent CVD complications, bringing up the participation of nontraditional risk factors such as advanced glycation end products (AGEs), carbamoylation and changes in the HDL proteome and functionality. The HDL composition, proteome, chemical modification and functionality were analyzed in nondialysis subjects with DKD categorized according to the estimated glomerular filtration rate (eGFR) and urinary albumin excretion rate (AER). Methods Individuals with DKD were divided into eGFR> 60 mL/min/1.73 m(2)plus AER stages A1 and A2 (n = 10) and eGFR< 60 plus A3 (n = 25) and matched by age with control subjects (eGFR> 60;n = 8). Results Targeted proteomic analyses quantified 28 proteins associated with HDL in all groups, although only 2 were more highly expressed in the eGFR< 60 + A3 group than in the controls: apolipoprotein D (apoD) and apoA-IV. HDL from the eGFR< 60 + A3 group presented higher levels of total AGEs (20%), pentosidine (6.3%) and carbamoylation (4.2 x) and a reduced ability to remove(14)C-cholesterol from macrophages (33%) in comparison to HDL from controls. The antioxidant role of HDL (lag time for LDL oxidation) was similar among groups, but HDL from the eGFR< 60 + A3 group presented a greater ability to inhibit the secretion of IL-6 and TNF-alpha (95%) in LPS-elicited macrophages in comparison to the control group. Conclusion The increase in apoD and apoA-IV could contribute to counteracting the HDL chemical modification by AGEs and carbamoylation, which contributes to HDL loss of function in well-established DKD.
Palavras-chave
Diabetic kidney disease, Advanced glycation, Carbamoylation, HDL, Apolipoprotein A-IV, Apolipoprotein D, Proteomics, Atherosclerosis
Referências
  1. Basnakian AG, 2010, ADV CLIN CHEM, V51, P25, DOI 10.1016/S0065-2423(10)51002-3
  2. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  3. Ben-Aicha S, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21030732
  4. CORNONIHUNTLEY J, 1993, AGING-CLIN EXP RES, V5, P27
  5. Corti MC, 1997, ANN INTERN MED, V126, P753, DOI 10.7326/0003-4819-126-10-199705150-00001
  6. de Magalhaes JP, 2009, BIOINFORMATICS, V25, P875, DOI 10.1093/bioinformatics/btp073
  7. Delanghe S, 2017, NAT REV NEPHROL, V13, P580, DOI 10.1038/nrneph.2017.103
  8. Duverger N, 1996, SCIENCE, V273, P966, DOI 10.1126/science.273.5277.966
  9. ENGLEN MD, 1995, J IMMUNOL METHODS, V184, P281, DOI 10.1016/0022-1759(95)00136-X
  10. Florens N, 2019, TOXINS, V11, DOI 10.3390/toxins11110671
  11. Ganda A, 2017, J MOL CELL CARDIOL, V112, P114, DOI 10.1016/j.yjmcc.2017.05.001
  12. Ganfornina MD, 2008, AGING CELL, V7, P506, DOI 10.1111/j.1474-9726.2008.00395.x
  13. Gansevoort RT, 2011, KIDNEY INT, V80, P93, DOI 10.1038/ki.2010.531
  14. GOLDBERG IJ, 1990, J BIOL CHEM, V265, P4266
  15. GUYARDDANGREMONT V, 1994, J LIPID RES, V35, P982
  16. Halimi JM, 2012, DIABETES METAB, V38, P291, DOI 10.1016/j.diabet.2012.04.001
  17. Holzer M, 2012, ANTIOXID REDOX SIGN, V17, P1043, DOI 10.1089/ars.2011.4403
  18. Holzer M, 2011, J AM SOC NEPHROL, V22, P1631, DOI 10.1681/ASN.2010111144
  19. Holzer M, 2011, ANTIOXID REDOX SIGN, V14, P2337, DOI 10.1089/ars.2010.3640
  20. Iborra RT, 2008, SCAND J MED SCI SPOR, V18, P742, DOI 10.1111/j.1600-0838.2007.00748.x
  21. Inker LA, 2014, AM J KIDNEY DIS, V63, P713, DOI 10.1053/j.ajkd.2014.01.416
  22. Jiang JP, 2012, ATHEROSCLEROSIS, V224, P187, DOI 10.1016/j.atherosclerosis.2012.06.022
  23. Kaseda R, 2018, BMC NEPHROL, V19, DOI 10.1186/s12882-018-0814-8
  24. Kollerits B, 2012, J INTERN MED, V272, P592, DOI 10.1111/j.1365-2796.2012.02585.x
  25. Kronenberg F, 2018, J AM SOC NEPHROL, V29, P1356, DOI 10.1681/ASN.2017070798
  26. Kronenberg F, 2017, CURR OPIN LIPIDOL, V28, P39, DOI 10.1097/MOL.0000000000000371
  27. Machado-Lima A, 2013, DIABETES-METAB RES, V29, P66, DOI 10.1002/dmrr.2362
  28. Machowska A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163826
  29. MacLean B, 2010, BIOINFORMATICS, V26, P966, DOI 10.1093/bioinformatics/btq054
  30. Maeba R, 2018, ATHEROSCLEROSIS, V270, P102, DOI 10.1016/j.atherosclerosis.2018.01.037
  31. Mange A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034107
  32. Maqbool M, 2018, SEMIN NEPHROL, V38, P217, DOI 10.1016/j.semnephrol.2018.02.003
  33. Matsushita K, 2010, LANCET, V375, P2073, DOI 10.1016/S0140-6736(10)60674-5
  34. Meier SM, 2015, LIFE SCI, V136, P1, DOI 10.1016/j.lfs.2015.06.005
  35. Muffat J, 2010, CELL CYCLE, V9, P269, DOI 10.4161/cc.9.2.10433
  36. Nicolas C, 2018, DIABETES METAB, V44, P160, DOI 10.1016/j.diabet.2017.05.006
  37. Nobecourt E, 2010, ARTERIOSCL THROM VAS, V30, P766, DOI 10.1161/ATVBAHA.109.201715
  38. Okuda LS, 2012, BBA-MOL CELL BIOL L, V1821, P1485, DOI 10.1016/j.bbalip.2012.08.011
  39. Okuda LS, 2020, MEDIAT INFLAMM, V2020, DOI 10.1155/2020/6515401
  40. Pageon H, 2007, EUR J DERMATOL, V17, P12
  41. Peng J, 2018, PROSTAG OTH LIPID M, V139, P87, DOI 10.1016/j.prostaglandins.2018.10.004
  42. Perdomo G, 2009, AGING-US, V1, P17
  43. Rabbani N, 2018, KIDNEY INT, V93, P803, DOI 10.1016/j.kint.2017.11.034
  44. Ravarotto V, 2018, LIFE SCI, V210, P125, DOI 10.1016/j.lfs.2018.08.067
  45. Rysz J, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020601
  46. Sarjeant JM, 2003, ARTERIOSCL THROM VAS, V23, P2172, DOI 10.1161/01.ATV.0000100404.05459.39
  47. Shao BH, 2019, ARTERIOSCL THROM VAS, V39, P1483, DOI 10.1161/ATVBAHA.119.312556
  48. Shao B, 2015, J PROTEOME RES, V14, P2792, DOI 10.1021/acs.jproteome.5b00060
  49. Silva ARM, 2020, J PROTEOME RES, V19, P248, DOI 10.1021/acs.jproteome.9b00511
  50. STEINMETZ A, 1990, J BIOL CHEM, V265, P7859
  51. Thomas EA, 2003, CURR MOL MED, V3, P408, DOI 10.2174/1566524033479681
  52. Thomas EA, 2003, MOL PSYCHIATR, V8, P167, DOI 10.1038/sj.mp.4001223
  53. TSALAMANDRIS C, 1994, DIABETES, V43, P649, DOI 10.2337/diabetes.43.5.649
  54. Vaisar T, 2007, J CLIN INVEST, V117, P746, DOI 10.1172/JCI26206
  55. Wang K, 2018, CLIN J AM SOC NEPHRO, V13, P1225, DOI 10.2215/CJN.11321017
  56. Yamamoto S, 2012, J AM COLL CARDIOL, V60, P2372, DOI 10.1016/j.jacc.2012.09.013