Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPANDIDOS PUBL LTD
Autores
MORELLI, Ana Paula
PAVAN, Isadora Carolina Betim
SILVA, Fernando Riback
GRANATO, Daniela Campos
PERUCA, Guilherme Francisco
PAULETTI, Bianca Alves
DOMINGUES, Romenia Ramos
BEZERRA, Rosangela Maria Neves
MOURA, Leandro Pereira De
Citação
INTERNATIONAL JOURNAL OF ONCOLOGY, v.58, n.6, article ID 28, 15p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Lung cancer is the leading cause of cancer-associated death worldwide and exhibits intrinsic and acquired therapeutic resistance to cisplatin (CIS). The present study investigated the role of mTOR signaling and other signaling pathways after metformin (MET) treatment in control and cisplatin-resistant A549 cells, mapping pathways and possible targets involved in CIS sensitivity. MTT, flow cytometry, clonogenic assay, western blotting, proteomic analysis using the Stable Isotope Labeling by Amino acids in Cell culture (SILAC) approach and reverse transcription-quantitative PCR were performed. The results revealed that CIS treatment induced mTOR signaling pathway overactivation, and the mTOR status was restored by MET. MET and the mTOR inhibitor rapamycin (RAPA) decreased the viability in control and resistant cells, and decreased the cell size increase induced by CIS. In control cells, MET and RAPA decreased colony formation after 72 h and decreased IC50 values, potentiating the effects of CIS. Proteomics analysis revealed important pathways regulated by MET, including transcription, RNA processing and IL-12-mediated signaling. In CIS-resistant cells, MET regulated the apoptotic process, oxidative stress and G(2)/M transition. Annexin 4 (ANXA4) and superoxide dismutase 2 (SOD2), involved in apoptosis and oxidative stress, respectively, were chosen to validate the SILAC analysis and may represent potential therapeutic targets for lung cancer treatment. In conclusion, the chemosensitizing and antiproliferative effects of MET were associated with mTOR signaling and with potential novel targets, such as ANXA4 and SOD2, in human lung cancer cells.
Palavras-chave
lung cancer, cisplatin resistance, metformin, mTOR, proteomics
Referências
  1. Barros FBA, 2018, BMC CANCER, V18, DOI 10.1186/s12885-017-3914-0
  2. Alam Farheen, 2017, Tumour Biol, V39, p1010428317714634, DOI 10.1177/1010428317714634
  3. Algire C, 2011, ONCOGENE, V30, P1174, DOI 10.1038/onc.2010.483
  4. Amaral CL, 2016, BMC CANCER, V16, DOI 10.1186/s12885-016-2629-y
  5. Becker M, 2014, TUMOR BIOL, V35, P1233, DOI 10.1007/s13277-013-1164-6
  6. Blandin AF, 2015, FRONT PHARMACOL, V6, DOI 10.3389/fphar.2015.00279
  7. Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI 10.3322/caac.21492
  8. Bremang M, 2013, MOL BIOSYST, V9, P2231, DOI 10.1039/c3mb00009e
  9. Campbell JD, 2016, NAT GENET, V48, P607, DOI 10.1038/ng.3564
  10. Cantrell LA, 2010, GYNECOL ONCOL, V116, P92, DOI 10.1016/j.ygyno.2009.09.024
  11. Cerami E, 2012, CANCER DISCOV, V2, P401, DOI 10.1158/2159-8290.CD-12-0095
  12. Chang XF, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020806
  13. Chatterjee A, 2015, CANCER LETT, V360, P134, DOI 10.1016/j.canlet.2015.01.043
  14. Cox J, 2011, J PROTEOME RES, V10, P1794, DOI 10.1021/pr101065j
  15. Cruz-Bermudez A, 2019, FREE RADICAL BIO MED, V135, P167, DOI 10.1016/j.freeradbiomed.2019.03.009
  16. Dang JH, 2017, ONCOL LETT, V14, P7557, DOI 10.3892/ol.2017.7176
  17. DeCensi A, 2010, CANCER PREV RES, V3, P1451, DOI 10.1158/1940-6207.CAPR-10-0157
  18. di Martino S, 2018, ONCOGENE, V37, P1369, DOI 10.1038/s41388-017-0044-8
  19. Donadon M, 2018, LIVER INT, V38, P303, DOI 10.1111/liv.13522
  20. Dong LL, 2012, J OBSTET GYNAECOL RE, V38, P1077, DOI 10.1111/j.1447-0756.2011.01839.x
  21. Duo J, 2013, DNA CELL BIOL, V32, P156, DOI 10.1089/dna.2012.1926
  22. Epperly MW, 2003, RADIAT RES, V160, P568, DOI 10.1667/RR3081
  23. Facchinetti F, 2017, CANCER TREAT REV, V55, P83, DOI 10.1016/j.ctrv.2017.02.010
  24. Feng XM, 2017, J EXP CLIN CANC RES, V36, DOI 10.1186/s13046-017-0594-1
  25. Franceschini A, 2013, NUCLEIC ACIDS RES, V41, pD808, DOI 10.1093/nar/gks1094
  26. Fujita H, 2019, ONCOL LETT, V17, P2431, DOI 10.3892/ol.2018.9869
  27. Gachechiladze M, 2016, NEOPLASMA, V63, P274, DOI 10.4149/214_150224N108
  28. Galluzzi L, 2014, CELL DEATH DIS, V5, DOI 10.1038/cddis.2013.428
  29. Galluzzi L, 2012, ONCOGENE, V31, P1869, DOI 10.1038/onc.2011.384
  30. Garon EB, 2015, NEW ENGL J MED, V372, P2018, DOI 10.1056/NEJMoa1501824
  31. Guertin DA, 2007, CANCER CELL, V12, P9, DOI 10.1016/j.ccr.2007.05.008
  32. Guo YD, 2018, ONCOL LETT, V16, P6261, DOI 10.3892/ol.2018.9473
  33. Hah YS, 2012, CANCER LETT, V323, P208, DOI 10.1016/j.canlet.2012.04.012
  34. Herbst RS, 2018, NATURE, V553, P446, DOI 10.1038/nature25183
  35. Hirsch FR, 2017, LANCET, V389, P299, DOI 10.1016/S0140-6736(16)30958-8
  36. Hosoki A, 2012, J RADIAT RES, V53, P58, DOI 10.1269/jrr.11034
  37. Hou GQ, 2014, J IMMUNOL RES, V2014, DOI 10.1155/2014/845763
  38. Ji ZM, 2018, CURR MED SCI, V38, P461, DOI 10.1007/s11596-018-1901-6
  39. Jiang G, 2018, INT J CLIN EXP PATHO, V11, P634
  40. Jin DH, 2017, ONCOTARGET, V8, P101509, DOI 10.18632/oncotarget.21552
  41. Ju LX, 2010, J CELL BIOCHEM, V111, P1565, DOI 10.1002/jcb.22888
  42. Kanda R, 2013, CANCER RES, V73, P6243, DOI 10.1158/0008-5472.CAN-12-4502
  43. Kang SW, 2015, INT J CLIN EXP MED, V8, P14647
  44. Krafft U, 2020, PATHOL ONCOL RES, V26, P1243, DOI 10.1007/s12253-019-00689-y
  45. Kullmann L, 2018, ONCOGENE, V37, P3045, DOI 10.1038/s41388-018-0145-z
  46. Lee JH, 2001, BBA-GEN SUBJECTS, V1526, P191, DOI 10.1016/S0304-4165(01)00126-X
  47. Lee JO, 2019, BREAST CANCER RES, V21, DOI 10.1186/s13058-019-1204-2
  48. Li CY, 2018, INT J MOL MED, V42, P1799, DOI 10.3892/ijmm.2018.3753
  49. Li L, 2016, ONCOTARGET, V7, P34442, DOI 10.18632/oncotarget.9120
  50. Li L, 2014, CLIN CANCER RES, V20, P2714, DOI 10.1158/1078-0432.CCR-13-2613
  51. Li LZ, 2015, ONCOTARGET, V6, P12009, DOI 10.18632/oncotarget.3617
  52. Li N, 2014, TUMOR BIOL, V35, P955, DOI 10.1007/s13277-013-1127-y
  53. Li YH, 2019, SIGNAL TRANSDUCT TAR, V4, DOI 10.1038/s41392-019-0084-3
  54. Liang SQ, 2019, ONCOGENE, V38, P622, DOI 10.1038/s41388-018-0479-6
  55. Lin CC, 2013, AM J RESP CELL MOL, V49, P241, DOI 10.1165/rcmb.2012-0244OC
  56. Liu GY, 2020, NAT REV MOL CELL BIO, V21, P183, DOI 10.1038/s41580-019-0199-y
  57. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  58. Lu ZM, 2016, J IMMUNOL RES, V2016, DOI 10.1155/2016/7828916
  59. Lundholm L, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2012.211
  60. Magnuson B, 2012, BIOCHEM J, V441, P1, DOI 10.1042/BJ20110892
  61. Matassa DS, 2016, CELL DEATH DIFFER, V23, P1542, DOI 10.1038/cdd.2016.39
  62. Matsuzaki S, 2014, INT J CANCER, V134, P1796, DOI 10.1002/ijc.28526
  63. Maynadier M, 2013, INT J ONCOL, V43, P1683, DOI 10.3892/ijo.2013.2095
  64. Mogami T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080359
  65. Morales DR, 2015, ANNU REV MED, V66, P17, DOI 10.1146/annurev-med-062613-093128
  66. Morimoto A, 2014, ONCOTARGET, V5, P7776, DOI 10.18632/oncotarget.2306
  67. Moro M, 2018, J THORAC ONCOL, V13, P1692, DOI 10.1016/j.jtho.2018.07.102
  68. Pandey A, 2000, NATURE, V405, P837, DOI 10.1038/35015709
  69. Pernicova I, 2014, NAT REV ENDOCRINOL, V10, P143, DOI 10.1038/nrendo.2013.256
  70. Planchard D, 2016, LANCET ONCOL, V17, P642, DOI 10.1016/S1470-2045(16)00077-2
  71. Qin XY, 2017, CELL BIOL INT, V41, P1110, DOI 10.1002/cbin.10819
  72. Queiroz EAIF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098207
  73. Riaz MA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-38004-5
  74. Ridge CA, 2013, SEMIN INTERVENT RAD, V30, P93, DOI 10.1055/s-0033-1342949
  75. Roesch A, 2013, CANCER CELL, V23, P811, DOI 10.1016/j.ccr.2013.05.003
  76. Sarin N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181081
  77. Seguin L, 2015, TRENDS CELL BIOL, V25, P234, DOI 10.1016/j.tcb.2014.12.006
  78. Shang DP, 2017, INT J ONCOL, V50, P1848, DOI 10.3892/ijo.2017.3950
  79. Sharma A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0209435
  80. Sheng JY, 2019, CELL PROLIFERAT, V52, DOI 10.1111/cpr.12609
  81. Song J, 2016, J BUON, V21, P244
  82. Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003
  83. Takada Y, 2002, MOL CANCER RES, V1, P137
  84. Tavares MR, 2015, LIFE SCI, V131, P1, DOI 10.1016/j.lfs.2015.03.001
  85. Teixeira SF, 2013, J BRAS PNEUMOL, V39, P644, DOI 10.1590/S1806-37132013000600002
  86. Teng X, 2019, ONCOL REP, V41, P1875, DOI 10.3892/or.2019.6959
  87. Uchibori K, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14768
  88. Vizcaino JA, 2014, NAT BIOTECHNOL, V32, P223, DOI 10.1038/nbt.2839
  89. Wang JM, 2020, BBA-MOL CELL RES, V1867, DOI 10.1016/j.bbamcr.2020.118647
  90. Wang JL, 2015, ONCOL LETT, V10, P1343, DOI 10.3892/ol.2015.3450
  91. Wang Q, 2017, ANTICANCER RES, V37, P2211, DOI 10.21873/anticanres.11556
  92. Wang Y, 2018, J EXP CLIN CANC RES, V37, DOI 10.1186/s13046-018-0731-5
  93. Wang YG, 2018, INT J BIOL SCI, V14, P1883, DOI 10.7150/ijbs.27854
  94. Wei YY, 2017, THORAC CANCER, V8, P26, DOI 10.1111/1759-7714.12400
  95. Wittig R, 2002, CANCER RES, V62, P6698
  96. Xie W, 2017, MED SCI MONITOR, V23, P29, DOI 10.12659/MSM.898710
  97. Xu ZP, 2017, AM J CANCER RES, V7, P531
  98. Yamashita T, 2012, BIOCHEM BIOPH RES CO, V421, P140, DOI 10.1016/j.bbrc.2012.03.144
  99. Yan XD, 2007, J PROTEOME RES, V6, P772, DOI 10.1021/pr060402r
  100. Yang H, 2016, AM J CANCER RES, V6, P2690
  101. Yang ML, 2017, J EXP CLIN CANC RES, V36, DOI 10.1186/s13046-017-0627-9
  102. Yang ZY, 2017, INT J CANCER, V140, P2805, DOI 10.1002/ijc.30691
  103. Yao HS, 2016, SCI REP-UK, V6, DOI 10.1038/srep31056
  104. Yazdi MT, 2016, ONCOIMMUNOLOGY, V5, DOI 10.1080/2162402X.2016.1255393
  105. Ye J, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-134
  106. Yu GZ, 2015, ONCOTARGET, V6, P12748, DOI 10.18632/oncotarget.3327
  107. Yue T, 2016, BMC CANCER, V16, DOI 10.1186/s12885-016-2701-7
  108. Zeller C, 2012, ONCOGENE, V31, P4567, DOI 10.1038/onc.2011.611
  109. Zhang CY, 2018, CANCER LETT, V438, P105, DOI 10.1016/j.canlet.2018.09.021
  110. Zhang JW, 2018, ONCOL LETT, V15, P1811, DOI [10.3892/ol.2017.7/1/11, 10.3892/ol.2017.7444]
  111. Zhang RW, 2019, AM J TRANSL RES, V11, P6860
  112. Zhang Y, 2016, NEOPLASMA, V63, P362, DOI 10.4149/304_150806N433
  113. Zhao Y, 2018, GYNECOL ENDOCRINOL, V34, P428, DOI 10.1080/09513590.2017.1409714
  114. Zhong DS, 2013, THORAC CANCER, V4, P229, DOI 10.1111/1759-7714.12003
  115. Zhong DS, 2006, LUNG CANCER, V53, P285, DOI 10.1016/j.lungcan.2006.05.018
  116. Zhu HY, 2016, SCI REP-UK, V6, DOI 10.1038/srep30788
  117. Zuo J, 2019, ONCOL REP, V42, P1497, DOI 10.3892/or.2019.7252