The role of chronic muscle (in)activity on carnosine homeostasis: a study with spinal cord-injured athletes

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
YAMAGUCHI, Guilherme de Carvalho
RAMKRAPES, Ana Paula Boito
SCHULZ, Mariane Leichsenring
BAPTISTA, Igor Luchini
RIANI, Luiz Augusto
SALE, Craig
MEDEIROS, Marisa Helena Gennari de
Citação
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, v.320, n.6, p.R824-R832, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
To examine the role of chronic (in)activity on muscle carnosine (MCarn) and how chronic (in)activity affects MCarn responses to 13-alanine supplementation in spinal cord-injured athletes, 16 male athletes with paraplegia were randomized (2:1 ratio) to receive 13-alanine (n = 11) or placebo (PL, n = 5). They consumed 6.4 g/day of 13-alanine or PL for 28 days. Muscle biopsies of the active deltoid and the inactive vastus lateralis (VL) were taken before and after supplementation. MCarn in the VL was also compared with the VL of a group of individuals without paraplegia (n = 15). MCarn was quantified in whole muscle and in pools of individual fibers by high-performance liquid chromatography. MCarn was higher in chronically inactive VL vs. well-trained deltoid (32.0 +/- 12.0 vs. 20.5 +/- 6.1 mmol/kg DM; P = 0.018). MCarn was higher in inactive vs. active VL (32.0 +/- 12.0 vs. 21.2 +/- 7.5 mmol/kg DM; P = 0.011). In type-I fibers, MCarn was significantly higher in the inactive VL than in the active deltoid (38.3 +/- 4.7 vs. 27.3 +/- 11.8 mmol/kg DM, P = 0.014). MCarn increased similarly between inactive VL and active deltoid in the 13-alanine group (VL: 68.9 +/- 55.1%, P = 0.0002; deltoid: 90.5 +/- 51.4%, P < 0.0001), with no changes in the PL group. MCarn content was higher in the inactive VL than in the active deltoid and the active VL, but this is probably a consequence of fiber type shift (type I to type II) that occurs with chronic inactivity. Chronically inactive muscle showed an increase in MCarn after BA supplementation equally to the active muscle, suggesting that carnosine accretion following 13-alanine supplementation is not influenced by muscle inactivity.
Palavras-chave
beta-alanine, carnosine, homeostasis, muscle activity, muscle inactivity
Referências
  1. Abe H, 2000, BIOCHEMISTRY-MOSCOW+, V65, P757
  2. Artioli GG, 2019, EUR J SPORT SCI, V19, P30, DOI 10.1080/17461391.2018.1444096
  3. Baba SP, 2013, J BIOL CHEM, V288, P28163, DOI 10.1074/jbc.M113.504753
  4. Baguet A, 2011, EUR J APPL PHYSIOL, V111, P2571, DOI 10.1007/s00421-011-1877-4
  5. BERGSTROM J, 1974, J APPL PHYSIOL, V36, P693, DOI 10.1152/jappl.1974.36.6.693
  6. Bex T, 2014, J APPL PHYSIOL, V116, P204, DOI 10.1152/japplphysiol.01033.2013
  7. Bex Tine, 2015, Front Nutr, V2, P13, DOI 10.3389/fnut.2015.00013
  8. Burnham R, 1997, SPINAL CORD, V35, P86, DOI 10.1038/sj.sc.3100364
  9. Carvalho VH, 2018, REDOX BIOL, V18, P222, DOI 10.1016/j.redox.2018.07.009
  10. Dolan E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32636-3
  11. Dunnett M, 1997, J CHROMATOGR B, V688, P47, DOI 10.1016/S0378-4347(97)88054-1
  12. Dutka TL, 2004, J MUSCLE RES CELL M, V25, P203, DOI 10.1023/B:JURE.0000038265.37022.c5
  13. Edge J, 2013, EXP PHYSIOL, V98, P481, DOI 10.1113/expphysiol.2012.067603
  14. Galpin AJ, 2012, ANAL BIOCHEM, V425, P175, DOI 10.1016/j.ab.2012.03.018
  15. Goncalves LD, 2020, AM J PHYSIOL-CELL PH, V318, pC777, DOI 10.1152/ajpcell.00550.2019
  16. Gorgey AS, 2019, EUR J APPL PHYSIOL, V119, P315, DOI 10.1007/s00421-018-4039-0
  17. GRIMBY G, 1976, SCAND J REHABIL MED, V8, P37
  18. Gross M, 2014, EUR J APPL PHYSIOL, V114, P221, DOI 10.1007/s00421-013-2767-8
  19. Harris RC, 1998, J SPORT SCI, V16, P639
  20. Harris RC, 2006, AMINO ACIDS, V30, P279, DOI 10.1007/s00726-006-0299-9
  21. Hill CA, 2007, AMINO ACIDS, V32, P225, DOI 10.1007/s00726-006-0364-4
  22. Hoetker D, 1985, J Appl Physiol, V2018, DOI 10.1152/japplphysiol.00007.2018. [30335580]
  23. Jones G, 2011, P NUTR SOC, V70, pE363, DOI 10.1017/S0029665111004484
  24. Jung MK, 2013, MOL NEUROBIOL, V47, P699, DOI 10.1007/s12035-012-8371-9
  25. Kendrick IP, 2008, AMINO ACIDS, V34, P547, DOI 10.1007/s00726-007-0008-3
  26. Kendrick IP, 2009, EUR J APPL PHYSIOL, V106, P131, DOI 10.1007/s00421-009-0998-5
  27. MANNION AF, 1994, EUR J APPL PHYSIOL O, V68, P356, DOI 10.1007/BF00571457
  28. Mora L, 2007, J AGR FOOD CHEM, V55, P4664, DOI 10.1021/jf0703809
  29. Painelli VD, 2018, MED SCI SPORT EXER, V50, P2242, DOI [10.1249/mss.0000000000001697, 10.1249/MSS.0000000000001697]
  30. PARKHOUSE WS, 1985, J APPL PHYSIOL, V58, P14, DOI 10.1152/jappl.1985.58.1.14
  31. Pires FO, 2011, INT J SPORTS MED, V32, P122, DOI 10.1055/s-0030-1268007
  32. Rezende NS, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00913
  33. Saunders B, 2017, BRIT J SPORT MED, V51, P658, DOI 10.1136/bjsports-2016-096396
  34. SCELSI R, 1982, ACTA NEUROPATHOL, V57, P243, DOI 10.1007/BF00692178
  35. Silva VD, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61587-x
  36. Tallon MJ, 2005, J STRENGTH COND RES, V19, P725
  37. Yamaguchi GC, 2021, MED SCI SPORT EXER, V53, P1079, DOI 10.1249/MSS.0000000000002559