Prefrontal resting-state connectivity and antidepressant response: no associations in the ELECT-TDCS trial

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Citação
EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, v.271, n.1, Special Issue, p.123-134, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Functional and structural MRI of prefrontal cortex (PFC) may provide putative biomarkers for predicting the treatment response to transcranial direct current stimulation (tDCS) in depression. A recent MRI study from ELECT-TDCS (Escitalopram versus Electrical Direct-Current Theror Depression Study) showed that depression improvement after tDCS was associated with gray matter volumes of PFC subregions. Based thereon, we investigated whether antidepressant effects of tDCS are similarly associated with baseline resting-state functional connectivity (rsFC). A subgroup of 51 patients underwent baseline rsFC-MRI. All patients of ELECT-TDCS were randomized to three treatment arms for 10 weeks (anodal-left, cathodal-right PFC tDCS plus placebo medication; escitalopram 10 mg/day for 3 weeks and 20 mg/day thereafter plus sham tDCS; and placebo medication plus sham tDCS). RsFC was calculated for various PFC regions and analyzed in relation to the individual antidepressant response. There was no significant association between baseline PFC connectivity of essential structural regions, nor any other PFC regions (after correction for multiple comparisons) and patients' individual antidepressant response. This study did not reveal an association between antidepressants effects of tDCS and baseline rsFC, unlike the gray matter volume findings. Thus, the antidepressant effects of tDCS may be differentially related to structural and functional MRI measurements.
Palavras-chave
Antidepressant response, Resting state functional connectivity (rsFC-MRI), Major depressive disorder (MDD), Non-invasive transcranial brain stimulation (NTBS), Prefrontal cortex, Transcranial direct current stimulation (tDCS)
Referências
  1. Antonenko D, 2019, BRAIN STIMUL, V12, P1159, DOI 10.1016/j.brs.2019.03.072
  2. Bates D, 2015, J STAT SOFTW, V67, P1, DOI 10.18637/jss.v067.i01
  3. Blautzik J, 2013, NEUROIMAGE, V71, P298, DOI 10.1016/j.neuroimage.2012.08.010
  4. Blumberger Daniel M, 2012, Front Psychiatry, V3, P74, DOI 10.3389/fpsyt.2012.00074
  5. Boggio PS, 2008, INT J NEUROPSYCHOPH, V11, P249, DOI 10.1017/S1461145707007833
  6. Brodmann K., 1909, VERGLEICHENDE LOKALI
  7. Brunoni AR, 2017, NEW ENGL J MED, V376, P2523, DOI 10.1056/NEJMoa1612999
  8. Brunoni AR, 2016, BRIT J PSYCHIAT, V208, P522, DOI 10.1192/bjp.bp.115.164715
  9. Brunoni AR, 2013, JAMA PSYCHIAT, V70, P383, DOI 10.1001/2013.jamapsychiatry.32
  10. Brunoni AR, 2015, SAO PAULO MED J, V133, P252, DOI 10.1590/1516-3180.2014.00351712
  11. Buckner RL, 2008, ANN NY ACAD SCI, V1124, P1, DOI 10.1196/annals.1440.011
  12. Bulubas L, 2019, BRAIN STIMUL, V12, P1197, DOI 10.1016/j.brs.2019.05.006
  13. Cipriani A, 2018, LANCET, V391, P1357, DOI 10.1016/S0140-6736(17)32802-7
  14. Dandekar MP, 2018, MOL PSYCHIATR, V23, P1094, DOI 10.1038/mp.2018.2
  15. Drysdale AT, 2017, NAT MED, V23, P28, DOI 10.1038/nm.4246
  16. Dunlop BW, 2017, AM J PSYCHIAT, V174, P533, DOI 10.1176/appi.ajp.2016.16050518
  17. Dunlop K, 2019, CURR PSYCHIAT REP, V21, DOI 10.1007/s11920-019-1072-6
  18. Fettes PW, 2018, BIOL PSYCHIAT-COGN N, V3, P337, DOI 10.1016/j.bpsc.2017.12.003
  19. Filmer HL, 2019, NEUROIMAGE, V196, P41, DOI 10.1016/j.neuroimage.2019.04.026
  20. Fonseka TM, 2018, J AFFECT DISORDERS, V233, P21, DOI 10.1016/j.jad.2017.10.049
  21. Fox MD, 2012, BIOL PSYCHIAT, V72, P595, DOI 10.1016/j.biopsych.2012.04.028
  22. Fox MD, 2012, NEUROIMAGE, V62, P2232, DOI 10.1016/j.neuroimage.2012.03.035
  23. Fu CHY, 2013, NEUROBIOL DIS, V52, P75, DOI 10.1016/j.nbd.2012.05.008
  24. Ge RY, 2020, BRAIN STIMUL, V13, P206, DOI 10.1016/j.brs.2019.10.012
  25. Ge RY, 2017, J AFFECT DISORDERS, V218, P75, DOI 10.1016/j.jad.2017.04.060
  26. Goldstein-Piekarski AN, 2018, TRANSL PSYCHIAT, V8, DOI 10.1038/s41398-018-0100-3
  27. Greicius MD, 2003, P NATL ACAD SCI USA, V100, P253, DOI 10.1073/pnas.0135058100
  28. Hedges LV, 2007, J EDUC BEHAV STAT, V32, P341, DOI 10.3102/1076998606298043
  29. Ironside M, 2019, JAMA PSYCHIAT, V76, P71, DOI 10.1001/jamapsychiatry.2018.2172
  30. Ivleva EI, 2020, NEUROIMAG CLIN N AM, V30, P35, DOI 10.1016/j.nic.2019.09.005
  31. Iwabuchi SJ, 2015, NEUROSCI BIOBEHAV R, V51, P77, DOI 10.1016/j.neubiorev.2015.01.006
  32. Kaiser RH, 2015, JAMA PSYCHIAT, V72, P603, DOI 10.1001/jamapsychiatry.2015.0071
  33. Kambeitz J, 2020, J AFFECT DISORDERS, V265, P460, DOI 10.1016/j.jad.2020.01.118
  34. Karali T, 2017, 23 ANN M ORG HUM BRA
  35. Keeser D, 2011, NEUROIMAGE, V55, P644, DOI 10.1016/j.neuroimage.2010.12.004
  36. Keeser D, 2011, J NEUROSCI, V31, P15284, DOI 10.1523/JNEUROSCI.0542-11.2011
  37. Kuznetsova A, 2017, J STAT SOFTW, V82, P1, DOI 10.18637/jss.v082.i13
  38. Lefaucheur JP, 2017, CLIN NEUROPHYSIOL, V128, P56, DOI 10.1016/j.clinph.2016.10.087
  39. Lefaucheur JP, 2014, CLIN NEUROPHYSIOL, V125, P2150, DOI 10.1016/j.clinph.2014.05.021
  40. Levy A, 2019, J ECT, V35, P77, DOI 10.1097/YCT.0000000000000570
  41. Li BJ, 2013, BIOL PSYCHIAT, V74, P48, DOI 10.1016/j.biopsych.2012.11.007
  42. Loo CK, 2018, BRAIN STIMUL, V11, P125, DOI 10.1016/j.brs.2017.10.011
  43. Moreno-Ortega M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41175-4
  44. Nitsche MA, 2000, J PHYSIOL-LONDON, V527, P633, DOI 10.1111/j.1469-7793.2000.t01-1-00633.x
  45. Nord CL, 2019, NEUROPSYCHOPHARMACOL, V44, P1613, DOI 10.1038/s41386-019-0401-0
  46. Opitz A, 2015, NEUROIMAGE, V109, P140, DOI 10.1016/j.neuroimage.2015.01.033
  47. Palm U, 2012, BRAIN STIMUL, V5, P242, DOI 10.1016/j.brs.2011.08.005
  48. Palmer SM, 2015, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.01045
  49. Pena-Gomez C, 2012, BRAIN STIMUL, V5, P252, DOI 10.1016/j.brs.2011.08.006
  50. Petrides M, 1999, EUR J NEUROSCI, V11, P1011, DOI 10.1046/j.1460-9568.1999.00518.x
  51. Phillips ML, 2015, AM J PSYCHIAT, V172, P124, DOI 10.1176/appi.ajp.2014.14010076
  52. R Development Team, 2017, R LANG ENV STAT COMP
  53. Raichle ME, 2001, P NATL ACAD SCI USA, V98, P676, DOI 10.1073/pnas.98.2.676
  54. Rorden C, 2000, BEHAV NEUROL, V12, P191, DOI 10.1155/2000/421719
  55. RStudio Team, 2016, RSTUDIO INT DEV ENV
  56. Sallet J, 2013, J NEUROSCI, V33, P12255, DOI 10.1523/JNEUROSCI.5108-12.2013
  57. Seibt O, 2015, BRAIN STIMUL, V8, P590, DOI 10.1016/j.brs.2015.01.401
  58. Suarez LE, 2020, TRENDS COGN SCI, V24, P302, DOI 10.1016/j.tics.2020.01.008
  59. van Waarde JA, 2015, MOL PSYCHIATR, V20, P609, DOI 10.1038/mp.2014.78
  60. Vazquez-Rodriguez B, 2019, P NATL ACAD SCI USA, V116, P21219, DOI 10.1073/pnas.1903403116
  61. Weigand A, 2018, BIOL PSYCHIAT, V84, P28, DOI 10.1016/j.biopsych.2017.10.028
  62. Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1
  63. Worsching J, 2018, BRAIN STIMUL, V11, P998, DOI 10.1016/j.brs.2018.05.001
  64. Worsching J, 2017, NEUROIMAGE, V155, P187, DOI 10.1016/j.neuroimage.2017.04.052