Quantification of Retinal Neural Loss in Patients with Neuromyelitis Optica and Multiple Sclerosis with or without Optic Neuritis Using Fourier-Domain Optical Coherence Tomography

Carregando...
Imagem de Miniatura
Citações na Scopus
103
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC RESEARCH VISION OPHTHALMOLOGY INC
Citação
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, v.53, n.7, p.3959-3966, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
PURPOSE. We compared retinal nerve fiber layer (RNFL) and macular thickness measurements in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO) with or without a history of optic neuritis, and in controls using Fourier-domain (FD) optical coherence tomography (OCT). METHODS. Patients with MS (n = 60), NMO (n = 33), longitudinal extensive transverse myelitis (LETM, n = 28) and healthy controls (n = 41) underwent ophthalmic examination, including automated perimetry, and FD-OCT RNFL and macular thickness measurements. Five groups of eyes were compared: MS with or without previous optic neuritis, NMO, LETM, and controls. Correlation between OCT and visual field (VF) findings was investigated. RESULTS. With regard to most parameters, RNFL and macular thickness measurements were significantly smaller in eyes of each group of patients compared to controls. MS eyes with optic neuritis did not differ significantly from MS eyes without optic neuritis, but measurements were smaller in NMO eyes than in all other groups. RNFL (but not macular thickness) measurements were significantly smaller in LETM eyes than in controls. While OCT abnormalities were correlated significantly with VF loss in NMO/LETM and MS, the correlation was much stronger in the former. CONCLUSIONS. Although FD-OCT RNFL and macular thickness measurements can reveal subclinical or optic neuritis-related abnormalities in NMO-spectrum and MS patients, abnormalities are predominant in the macula of MS patients and in RFNL measurements in NMO patients. The correlation between OCT and VF abnormalities was stronger in NMO than in MS, suggesting the two conditions differ regarding structural and functional damage. (ClinicalTrials.gov number, NCT01024985.) Invest Ophthalmol Vis Sci. 2012;53:3959-3966) DOI:10.1167/iovs.11-9324
Palavras-chave
Referências
  1. Bock M, 2012, BRIT J OPHTHALMOL, V96, P62, DOI 10.1136/bjo.2010.193581
  2. Bock M, 2010, MULT SCLER J, V16, P893, DOI 10.1177/1352458510365156
  3. Bock M, 2010, CLIN NEUROL NEUROSUR, V112, P647, DOI 10.1016/j.clineuro.2010.04.014
  4. Burkholder BM, 2009, ARCH NEUROL-CHICAGO, V66, P1366, DOI 10.1001/archneurol.2009.230
  5. Cheng H, 2007, INVEST OPHTH VIS SCI, V48, P5798, DOI 10.1167/iovs.07-0738
  6. Costa-Cunha LVF, 2009, AM J OPHTHALMOL, V147, P56, DOI 10.1016/j.ajo.2008.07.020
  7. Costello F, 2008, MULT SCLER J, V14, P893, DOI 10.1177/1352458508091367
  8. Costello F, 2010, CAN J OPHTHALMOL, V45, P520, DOI 10.3129/i10-063
  9. de Seze J, 2008, ARCH NEUROL-CHICAGO, V65, P920, DOI 10.1001/archneur.65.7.920
  10. Fernandes DB, 2012, J NEURO-OPHTHALMOL, V32, P102, DOI 10.1097/WNO.0b013e31823a9ebc
  11. Fisher JB, 2006, OPHTHALMOLOGY, V113, P324, DOI 10.1016/j.ophtha.2005.10.040
  12. Garway-Heath DF, 2000, OPHTHALMOLOGY, V107, P1809, DOI 10.1016/S0161-6420(00)00284-0
  13. Green AJ, 2009, J NEUROL NEUROSUR PS, V80, P1002, DOI 10.1136/jnnp.2008.166207
  14. Green AJ, 2010, BRAIN, V133, P1591, DOI 10.1093/brain/awq080
  15. Henderson APD, 2008, BRAIN, V131, P277, DOI 10.1093/brain/awm285
  16. Khanifar Aziz A, 2010, Clin Ophthalmol, V4, P1007
  17. Kitsos G, 2010, EUR J NEUROL, V18, P719
  18. Klistorner A, 2008, ANN NEUROL, V64, P325, DOI 10.1002/ana.21474
  19. Laron M, 2010, MULT SCLER J, V16, P412, DOI 10.1177/1352458509359782
  20. McDonald WI, 2001, ANN NEUROL, V50, P121, DOI 10.1002/ana.1032
  21. Medeiros FA, 2009, INVEST OPHTH VIS SCI, V50, P5741, DOI 10.1167/iovs.09-3715
  22. Merle H, 2008, INVEST OPHTH VIS SCI, V49, P4412, DOI 10.1167/iovs.08-1815
  23. Moura FC, 2011, ARQ NEURO-PSIQUIAT, V69, P69
  24. Naismith RT, 2009, NEUROLOGY, V72, P1077, DOI 10.1212/01.wnl.0000345042.53843.d5
  25. Nakamura M, 2010, GRAEF ARCH CLIN EXP, V248, P1777, DOI 10.1007/s00417-010-1344-7
  26. Parisi V, 1999, INVEST OPHTH VIS SCI, V40, P2520
  27. Pueyo V, 2008, MULT SCLER J, V14, P609, DOI 10.1177/1352458507087326
  28. Pulicken M, 2007, NEUROLOGY, V69, P2085, DOI 10.1212/01.wnl.0000294876.49861.dc
  29. Ratchford JN, 2009, NEUROLOGY, V73, P302, DOI 10.1212/WNL.0b013e3181af78b8
  30. Saidha S, 2011, BRAIN, V134, P518, DOI 10.1093/brain/awq346
  31. Sepulcre J, 2007, NEUROLOGY, V68, P1488, DOI 10.1212/01.wnl.0000260612.51849.ed
  32. Serbecic N, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013877
  33. Talman LS, 2010, ANN NEUROL, V67, P749, DOI 10.1002/ana.22005
  34. Trip SA, 2005, ANN NEUROL, V58, P383, DOI 10.1002/ana.20575
  35. Weinshenker BG, 2006, ANN NEUROL, V59, P566, DOI 10.1002/ana.20770
  36. Wingerchuk DM, 2006, NEUROLOGY, V66, P1485, DOI 10.1212/01.wnl.0000216139.44259.74
  37. Zaveri MS, 2008, ARCH NEUROL-CHICAGO, V65, P924, DOI 10.1001/archneur.65.7.924