Morphological Basis for Airway Surgical Intervention in Apert Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
LU, Xiaona
FORTE, Antonio Jorge
PARK, Kitae Eric
ALLAM, Omar
ALPEROVICH, Michael
STEINBACHER, Derek M.
TONELLO, Cristiano
PERSING, John A.
Citação
ANNALS OF PLASTIC SURGERY, v.87, n.1, p.59-64, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective Previous studies have explored the restricted nasopharyngeal airway in Apert syndrome patients. This study aims to investigate the segmented airway volume changes with age and directly analyze their correlations with subcranial dimensions and angulations. Methods Ninety-seven preoperative computed tomography scans (Apert, n = 44; control, n = 53) were included in this study, and divided into 5 age-related subgroups. Computed tomography scans were measured using Mimics and 3-matics software. Results Before 6 months of age, the nasal cavity in Apert syndrome is reduced by 47% (P = 0.002), which gradually approximates normal thereafter; however, there remained a 30% reduction, compared with controls. It is highly correlated with the anteroposterior length of subcranial space, and the position of maxilla and palate. The pharyngeal airway volume in Apert syndrome patients, younger than 6 months, was larger than normal by 129% (P = 0.013). However, between 2 and 6 years of age, the pharyngeal airway becomes smaller than normal, with a 57% (P = 0.010) reduction in childhood and 52% (P = 0.005) in adolescence. It is closely correlated with the intercondylar and intergonial widths. Conclusions Airway compromise in Apert syndrome patients is attributable more to the nasal cavity in infants, but in the older child, it is the pharyngeal region. The restricted nasal airway in Apert syndrome is correlated with the subcranial space length and width, but independent of cranial base flexion. The pharyngeal airway volume in Apert syndrome is not as highly correlated with craniofacial morphology. Rather, it is impacted by the growth of mandible, which often requires surgical intervention later in childhood.
Palavras-chave
Apert syndrome, nasal, pharyngeal, airway, subcranial space
Referências
  1. Al-Saleh S, 2011, J CRANIO MAXILL SURG, V39, P153, DOI 10.1016/j.jcms.2010.04.011
  2. Alsaadi MM, 2013, SLEEP BREATH, V17, P389, DOI 10.1007/s11325-012-0706-2
  3. Bannink N, 2010, INT J ORAL MAX SURG, V39, P115, DOI 10.1016/j.ijom.2009.11.021
  4. Cheung T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043405
  5. COHEN MM, 1992, AM J MED GENET, V44, P90, DOI 10.1002/ajmg.1320440121
  6. D'Anza B, 2014, OTOLARYNG HEAD NECK, V150, P1086, DOI 10.1177/0194599814522591
  7. Denny AD, 2001, PLAST RECONSTR SURG, V108, P302, DOI 10.1097/00006534-200108000-00004
  8. Doerga PN, 2016, J CRANIO MAXILL SURG, V44, P191, DOI 10.1016/j.jcms.2015.11.004
  9. DRAKE AF, 1993, LARYNGOSCOPE, V103, P915
  10. Ettinger RE, 2011, PLAST RECONSTR SURG, V127, P1612, DOI 10.1097/PRS.0b013e318208d2de
  11. Flores RL, 2009, PLAST RECONSTR SURG, V124, P590, DOI 10.1097/PRS.0b013e3181b0fba9
  12. Forte AJ, 2019, PLAST RECONSTR SURG, V144, P704, DOI 10.1097/PRS.0000000000005937
  13. Forte AJ, 2019, ANN PLAS SURG, V82, P686, DOI 10.1097/SAP.0000000000001740
  14. Hardin Kimberly A, 2010, Expert Rev Respir Med, V4, P315, DOI 10.1586/ers.10.30
  15. Hoeve LJH, 2003, INT J PEDIATR OTORHI, V67, pS111, DOI 10.1016/j.ijporl.2003.08.007
  16. Holmes G, 2018, DEVELOPMENT, V145, DOI 10.1242/dev.166488
  17. Hopper RA, 2018, J ORAL MAXIL SURG, V76, DOI 10.1016/j.joms.2018.04.023
  18. Hopper RA, 2013, PLAST RECONSTR SURG, V132, P129, DOI 10.1097/PRS.0b013e318290fa8a
  19. Hopper RA, 2012, CURR OPIN OTOLARYNGO, V20, P298, DOI 10.1097/MOO.0b013e3283543a43
  20. Hutson LR, 2007, J CLIN ANESTH, V19, P551, DOI 10.1016/j.jclinane.2007.02.015
  21. Kobayashi S, 2019, J CRANIOFAC SURG, V30, P53, DOI 10.1097/SCS.0000000000004936
  22. Kreiborg S, 1999, J CRAN GENET DEV BIO, V19, P1
  23. Lertsburapa K, 2010, J PEDIATR SURG, V45, P1438, DOI 10.1016/j.jpedsurg.2009.09.005
  24. Liu SYC, 2017, OTOLARYNG HEAD NECK, V157, P345, DOI 10.1177/0194599817707168
  25. Looby JF, 2009, J CRANIOFAC SURG, V20, P1341, DOI 10.1097/SCS.0b013e3181ae4139
  26. Lu X., 2018, J CRANIOMAXILLOFAC S, P30426
  27. Lu XN, 2019, ANN PLAS SURG, V83, P568, DOI 10.1097/SAP.0000000000001811
  28. Lu XN, 2019, J CRANIOFAC SURG, V30, P317, DOI 10.1097/SCS.0000000000004836
  29. Marucci DD, 2008, PLAST RECONSTR SURG, V122, P1162, DOI 10.1097/PRS.0b013e31818458f0
  30. Mitsukawa N, 2013, J PLAST RECONSTR AES, V66, P1206, DOI 10.1016/j.bjps.2013.04.061
  31. MOORE MH, 1993, BRIT J PLAST SURG, V46, P355, DOI 10.1016/0007-1226(93)90039-E
  32. Nout E, 2012, J CRANIO MAXILL SURG, V40, P209, DOI 10.1016/j.jcms.2011.04.017
  33. Nout E, 2010, PLAST RECONSTR SURG, V126, P564, DOI 10.1097/PRS.0b013e3181de227f
  34. Perlyn CA, 2002, PLAST RECONSTR SURG, V109, P1809, DOI 10.1097/00006534-200205000-00005
  35. PETERSONFALZONE SJ, 1981, CLEFT PALATE J, V18, P237
  36. Rachmiel A, 2005, INT J ORAL MAX SURG, V34, P9, DOI 10.1016/j.ijom.2004.05.010
  37. Susarla S, 2019, PLAST RECONSTR SURG, V144, P710, DOI 10.1097/PRS.0000000000005999
  38. Tan HL, 2016, SLEEP MED REV, V27, P74, DOI 10.1016/j.smrv.2015.05.010
  39. Taylor JA, 2017, PLAST RECONSTR SURG, V140, p82E, DOI 10.1097/PRS.0000000000003524
  40. Vinha PP, 2020, J CRANIO MAXILL SURG, V48, P339, DOI 10.1016/j.jcms.2020.02.007
  41. Xu HS, 2009, J CRANIOFAC SURG, V20, P1876, DOI 10.1097/SCS.0b013e3181b91945
  42. Yoon A, 2020, SLEEP MED, V65, P172, DOI 10.1016/j.sleep.2019.06.002