Topical buparvaquone nano-enabled hydrogels for cutaneous leishmaniasis

Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
LALATSA, Aikaterini
STATTS, Larry
ADEWUSI, Olivia
DEA-AYUELA, Maria Auxiliadora
BOLAS-FERNANDEZ, Francisco
SERRANO, Dolores R.
Citação
INTERNATIONAL JOURNAL OF PHARMACEUTICS, v.588, article ID 119734, 11p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Leishmaniasis is a neglected disease presenting cutaneous, mucosal and visceral forms and affecting an estimated 12 million mostly low-income people. Treatment of cutaneous leishmaniasis (CL) is recommended to expedite healing, reduce risk of scarring, prevent parasite dissemination to other mucocutaneous (common with New World species) or visceral forms and reduce the chance of relapse, but remains an unmet need. Available treatments are painful, prolonged (> 20 days) and require hospitalisation, which increases the cost of therapy. Here we present the development of optimised topical self-nanoemulsifying drug delivery systems (SNEDDS) loaded with buparvaquone (BPQ, a hydroxynapthoquinone from the open Malaria Box) for the treatment of CL from New World species. The administration of topical BPQ-SNEDDS gels for 7 days resulted in a reduction of parasite load of 99.989 +/- 0.019% similar to the decrease achieved with intralesionally administered Glucantime (R) (99.873 +/- 0.204%) in a L. amazonensis BALB/c model. In vivo efficacy was supported by ex vivo permeability and in vivo tape stripping studies. BPQ-SNEDDS and their hydrogels demonstrated linear flux across non-infected CD-1 mouse skin ex vivo of 182.4 +/- 63.0 mu g cm(-2) h(-1) and 57.6 +/- 10.8 mu g cm(-2 )h(-1) respectively localising BPQ within the skin in clinically effective concentrations (227.0 +/- 45.9 mu g and 103.8 +/- 33.8 mu g) respectively. These levels are therapeutic as BPQ-SNEDDS and their gels showed nanomolar in vitro efficacy against L. amazonensis and L. braziliensis amastigotes with excellent selectivity index toward parasites versus murine macrophages. In vivo tape stripping experiments indicated localisation of BPQ within the stratum corneum and dermis. Histology studies confirmed the reduction of parasitism and indicated healing in animals treated with BPQ-SNEDDS hydrogels. These results highlight the potential clinical capability of nano-enabled BPQ hydrogels towards a non-invasive treatment for CL.
Palavras-chave
Buparvaquone, Cutaneous Leishmaniasis, Mucocutaneous Leishmaniasis, Self-nanoemulsifying drug delivery systems (SNEDDS), Hydrogels, Franz cell diffusion assays, Tape stripping
Referências
  1. Alvar J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035671
  2. Dea-Ayuela MA, 2009, BIOORGAN MED CHEM, V17, P7449, DOI 10.1016/j.bmc.2009.09.030
  3. Bilbao-Ramos P, 2012, J MICROBIOL METH, V89, P8, DOI 10.1016/j.mimet.2012.01.013
  4. Carvalho AK, 2016, MEDIAT INFLAMM, V2016, DOI 10.1155/2016/7068287
  5. Chakraborti CK, 2014, J ADV PHARM TECHNOL, V5, P140, DOI 10.4103/2231-4040.137434
  6. Dickel H, 2010, SKIN PHARMACOL PHYS, V23, P259, DOI 10.1159/000314700
  7. Passero LFD, 2018, CURR TOP MED CHEM, V18, P1275, DOI 10.2174/1568026618666181002114448
  8. FRY M, 1992, BIOCHEM PHARMACOL, V43, P1545, DOI 10.1016/0006-2952(92)90213-3
  9. Ganem-Quintanar A, 2006, J NANOSCI NANOTECHNO, V6, P3235, DOI 10.1166/jnn.2006.475
  10. Garnier T, 2007, J ANTIMICROB CHEMOTH, V60, P802, DOI 10.1093/jac/dkm303
  11. Garnier T, 2007, J PHARM PHARMACOL, V59, P41, DOI 10.1211/jpp.59.1.0006
  12. Khan GM, 1998, J CONTROL RELEASE, V56, P127, DOI 10.1016/S0168-3659(98)00080-7
  13. KIETZMANN M, 1990, LAB ANIM, V24, P321, DOI 10.1258/002367790780865921
  14. Lalatsa A, 2015, J CONTROL RELEASE, V197, P87, DOI 10.1016/j.jconrel.2014.10.028
  15. Lalatsa A, 2012, MOL PHARMACEUT, V9, P1764, DOI 10.1021/mp300068j
  16. Lalatsa A, 2020, INT J PHARMACEUT, V577, DOI 10.1016/j.ijpharm.2019.119003
  17. Lalatsa A, 2016, BRIT J OPHTHALMOL, V100, P871, DOI 10.1136/bjophthalmol-2015-308250
  18. Moreno E, 2014, EXPERT OPIN DRUG DEL, V11, P579, DOI 10.1517/17425247.2014.885500
  19. PHILLIPS CA, 1995, J PHARM SCI, V84, P1427, DOI 10.1002/jps.2600841208
  20. Reddy MB, 2002, PHARM RES-DORDR, V19, P292, DOI 10.1023/A:1014443001802
  21. Rolon M, 2006, PARASITOL RES, V99, P103, DOI 10.1007/s00436-006-0126-y
  22. Serrano D.R., 2019, PHARMACEUTICS, V11
  23. Serrano DR, 2017, J DRUG DELIV SCI TEC, V42, P75, DOI 10.1016/j.jddst.2017.04.017
  24. Serrano DR, 2015, MOL PHARMACEUT, V12, P420, DOI 10.1021/mp500527x
  25. Smith L, 2018, MOL PHARMACEUT, V15, P2570, DOI 10.1021/acs.molpharmaceut.8b00097
  26. Soni MP, 2014, J PHARM BIOALLIED SC, V6, P22, DOI 10.4103/0975-7406.124309
  27. Sundar S, 2015, EXPERT OPIN PHARMACO, V16, P237, DOI 10.1517/14656566.2015.973850
  28. Trinconi CT, 2016, J ANTIMICROB CHEMOTH, V71, P1314, DOI 10.1093/jac/dkv495
  29. Uranw S, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002062
  30. Van Bocxlaer K, 2016, J ANTIMICROB CHEMOTH, V71, P1578, DOI 10.1093/jac/dkw012
  31. Venkatesh G, 2010, DRUG DEV IND PHARM, V36, P735, DOI 10.3109/03639040903460446
  32. Wenzler T, 2009, DRUG SCREENING KINET
  33. Wijnant G.J., 2018, ANTIMICROB AGENTS CH, V62
  34. Yamamoto ES, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144946