What Is the Difference in Cranial Base Morphology in Isolated and Syndromic Bicoronal Synostosis?

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
LU, Xiaona
FORTE, Antonio Jorge
WILSON, Alexander T.
PARK, Kitae Eric
ALLAM, Omar
MOZAFFARI, Mohammad Ali
ALPEROVICH, Michael
STEINBACHER, Derek M.
PERSING, John A.
Citação
PLASTIC AND RECONSTRUCTIVE SURGERY, v.146, n.3, p.599-610, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The association of isolated craniosynostosis and the influence of syndromic forms confound the understanding of craniofacial morphologic development. This study attempts to clarify the individual influences of isolated bicoronal synostosis, Apert syndrome, and Crouzon syndromes on skull base morphology. Methods:: One hundred seventeen computed tomographic scans were included (nonsyndromic bicoronal synostosis,n= 36; Apert syndrome with bicoronal synostosis,n= 25; Crouzon syndrome with bicoronal synostosis,n= 11; controls,n= 45). Cephalometric measurements were analyzed using Materialise software. Results: Nonsyndromic bicoronal synostosis patients developed a shortened cranial base length, with a significantly shortened distance between nasion and sella (p= 0.005). The cranial base angles of nonsyndromic bicoronal synostosis in both the cranial side (N-S-BA) and facial side (N-SO-BA) increased significantly, by 17.04 degrees (p <0.001) and 11.75 degrees (p <0.001), respectively. However, both the N-S-BA and N-SO-BA angles of Apert syndrome and Crouzon syndrome were narrowed more than that of nonsyndromic bicoronal synostosis [by 12.11 degrees (p <0.001) and 12.44 degrees (p <0.001), respectively, in Apert syndrome; and by 11.66 degrees (p= 0.007) and 13.71 degrees (p= 0.007), respectively, in Crouzon syndrome]. However, there is no statistically significant difference of these two angles between Apert syndrome and Crouzon syndrome, when they were only associated with bicoronal synostosis. Contrary to the relatively normal subcranial space of nonsyndromic bicoronal synostosis, both Apert and Crouzon syndromes developed a reduced subcranial space. Conclusions: Isolated bicoronal synostosis resulted in a flattened cranial base, whereas Apert syndrome and Crouzon syndrome developed a normal cranial base angle when only associated with bicoronal synostosis. The syndromic skulls had additional significantly reduced subcranial space.
Palavras-chave
Referências
  1. AlQattan MM, 1996, J CRANIOFAC SURG, V7, P69, DOI 10.1097/00001665-199601000-00015
  2. Babler W J, 1982, Prog Clin Biol Res, V101, P333
  3. Bastidas N, 2012, PLAST RECONSTR SURG, V130, P877, DOI 10.1097/PRS.0b013e318262f2fd
  4. Belden CJ, 1997, AM J NEURORADIOL, V18, P811
  5. Bendon CL, 2014, J CRANIO MAXILL SURG, V42, P245, DOI 10.1016/j.jcms.2013.05.009
  6. BURDI AR, 1986, CLEFT PALATE J, V23, P28
  7. Coll G, 2018, WORLD NEUROSURG, V109, pE460, DOI 10.1016/j.wneu.2017.09.208
  8. Coll G, 2015, NEUROSURGERY, V76, P571, DOI 10.1227/NEU.0000000000000676
  9. Emmez H, 2009, CHILD NERV SYST, V25, P1605, DOI 10.1007/s00381-009-0939-y
  10. Engel M, 2019, J CRANIO MAXILL SURG, V47, P420, DOI 10.1016/j.jcms.2018.11.028
  11. Esparza J, 2008, NEUROCIRUGIA, V19, P509
  12. Ettinger RE, 2011, PLAST RECONSTR SURG, V127, P1612, DOI 10.1097/PRS.0b013e318208d2de
  13. Flaherty K, 2016, WIRES DEV BIOL, V5, P429, DOI 10.1002/wdev.227
  14. Forte AJ, 2019, PLAST RECONSTR SURG, V144, P704, DOI 10.1097/PRS.0000000000005937
  15. Forte AJ, 2014, PLAST RECONSTR SURG, V134, P285, DOI 10.1097/PRS.0000000000000360
  16. Foster KA, 2008, PLAST RECONSTR SURG, V121, p70E, DOI 10.1097/01.prs.0000299393.36063.de
  17. Goldstein JA, 2014, PLAST RECONSTR SURG, V134, P504, DOI 10.1097/PRS.0000000000000419
  18. Goodrich JT, 2005, CHILD NERV SYST, V21, P871, DOI 10.1007/s00381-004-1113-1
  19. Hatch NE, 2010, CRIT REV EUKAR GENE, V20, P295, DOI 10.1615/CritRevEukarGeneExpr.v20.i4.20
  20. KREIBORG S, 1993, J CRANIO MAXILL SURG, V21, P181, DOI 10.1016/S1010-5182(05)80478-0
  21. KREIBORG S, 1982, SCAND J PLAST RECONS, V16, P245, DOI 10.3109/02844318209026215
  22. KREIBORG S, 1990, J CRAN GENET DEV BIO, V10, P399
  23. KREIBORG S, 1976, CLEFT PALATE J, V13, P296
  24. Lu X, 2019, INT J ORAL MAX SURG, V48, P309, DOI 10.1016/j.ijom.2018.10.013
  25. Lu XN, 2020, PLAST RECONSTR SURG, V145, p790E, DOI 10.1097/PRS.0000000000006679
  26. Lu XN, 2019, PLAST RECONSTR SURG, V143, p1233E, DOI 10.1097/PRS.0000000000005643
  27. Lu XN, 2019, PRS-GLOB OPEN, V7, DOI 10.1097/GOX.0000000000002158
  28. Lu XN, 2019, J PLAST SURG HAND SU, V53, P130, DOI 10.1080/2000656X.2018.1541324
  29. Lu XN, 2018, J CRANIO MAXILL SURG, V46, P2042, DOI 10.1016/j.jcms.2018.09.026
  30. Lu XN, 2019, J CRANIOFAC SURG, V30, P317, DOI 10.1097/SCS.0000000000004836
  31. Mazzaferro DM, 2018, PLAST RECONSTR SURG, V141, p559E, DOI 10.1097/PRS.0000000000004238
  32. McGrath J, 2012, PLAST RECONSTR SURG, V130, p681E, DOI 10.1097/PRS.0b013e318267d4c0
  33. Metzler P, 2013, J CRANIOFAC SURG, V24, P753, DOI 10.1097/SCS.0b013e3182868b4f
  34. MOONEY MP, 1994, CLEFT PALATE-CRAN J, V31, P8, DOI 10.1597/1545-1569(1994)031<0008:DOASOR>2.3.CO;2
  35. MOONEY MP, 1993, CLEFT PALATE-CRAN J, V30, P121, DOI 10.1597/1545-1569(1993)030<0121:CBCSSI>2.3.CO;2
  36. MOONEY MP, 1994, CLEFT PALATE-CRAN J, V31, P1, DOI 10.1597/1545-1569(1994)031<0001:DOASOR>2.3.CO;2
  37. MOORE MH, 1993, BRIT J PLAST SURG, V46, P355, DOI 10.1016/0007-1226(93)90039-E
  38. Morris LM, 2016, FACIAL PLAST SURG CL, V24, P517, DOI 10.1016/j.fsc.2016.06.007
  39. MULLIKEN JB, 1986, PLAST RECONSTR SURG, V77, P7
  40. Nout E, 2010, PLAST RECONSTR SURG, V126, P564, DOI 10.1097/PRS.0b013e3181de227f
  41. Perlyn CA, 2001, PLAST RECONSTR SURG, V108, P294, DOI 10.1097/00006534-200108000-00003
  42. Persing J A, 1991, Neurosurg Clin N Am, V2, P655
  43. PERSING JA, 1991, PLAST RECONSTR SURG, V87, P1028, DOI 10.1097/00006534-199106000-00003
  44. REARDON W, 1994, NAT GENET, V8, P98, DOI 10.1038/ng0994-98
  45. Rosenberg P, 1997, PLAST RECONSTR SURG, V99, P1396, DOI 10.1097/00006534-199704001-00030
  46. Shirley NR, 2011, J FORENSIC SCI, V56, P580, DOI 10.1111/j.1556-4029.2011.01705.x
  47. Smartt JM, 2011, PLAST RECONSTR SURG, V127, P303, DOI 10.1097/PRS.0b013e3181f95cd8
  48. Tahiri Y, 2017, PLAST RECONSTR SURG, V140, p177E, DOI 10.1097/PRS.0000000000003473
  49. Tokumaru AM, 1996, AM J NEURORADIOL, V17, P619
  50. WAGNER JD, 1995, J CRANIOFAC SURG, V6, P32, DOI 10.1097/00001665-199501000-00010
  51. Wilke TA, 1997, DEV DYNAM, V210, P41, DOI 10.1002/(SICI)1097-0177(199709)210:1<41::AID-AJA5>3.0.CO;2-1