Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria

Carregando...
Imagem de Miniatura
Citações na Scopus
191
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
SECKLER, Marcelo Martins
OLIVEIRA, Roberto Angelo de
FRANCO, Fabiane Fantinelli
MARANGONI, Valeria Spolon
ZUCOLOTTO, Valtencir
Citação
JOURNAL OF NANOBIOTECHNOLOGY, v.13, article ID 64, 16p, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. Results: This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem-and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 mu g mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag+ ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. Conclusion: It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.
Palavras-chave
Silver nanoparticle, Antimicrobial test, Multidrug resistant bacteria
Referências
  1. Webb GF, 2005, P NATL ACAD SCI USA, V102, P13343, DOI 10.1073/pnas.0504053102
  2. Jena P, 2012, INT J NANOMED, V7, P1805, DOI 10.2147/IJN.S28077
  3. Sondi I, 2004, J COLLOID INTERF SCI, V275, P177, DOI 10.1016/j.jcis.2004.02.012
  4. Coronado EA, 2011, NANOSCALE, V3, P4042, DOI 10.1039/c1nr10788g
  5. Benhabiles S, 2012, FOOD HYDROCOLLOID, V29, P48, DOI 10.1016/j.foodhyd.2012.02.013
  6. Sharma VK, 2009, ADV COLLOID INTERFAC, V145, P83, DOI 10.1016/j.cis.2008.09.002
  7. Kim JS, 2007, NANOMED-NANOTECHNOL, V3, P95, DOI 10.1016/j.nano.2006.12.001
  8. Planquette B, 2013, AM J RESP CRIT CARE, V188, P69, DOI 10.1164/rccm.201210-1897OC
  9. Rai M, 2009, BIOTECHNOL ADV, V27, P76, DOI 10.1016/j.biotechadv.2008.09.002
  10. Zhao GJ, 1998, BIOMETALS, V11, P27, DOI 10.1023/A:1009253223055
  11. Khanna PK, 2005, MATER CHEM PHYS, V93, P117, DOI 10.1016/j.matchemphys.2005.02.029
  12. Shih CM, 2009, CARBOHYD POLYM, V78, P309, DOI 10.1016/j.carbpol.2009.04.008
  13. Mirzajani F, 2011, RES MICROBIOL, V162, P542, DOI 10.1016/j.resmic.2011.04.009
  14. Ruparelia JP, 2008, ACTA BIOMATER, V4, P707, DOI 10.1016/j.actbio.2007.11.006
  15. Lara HH, 2010, WORLD J MICROB BIOT, V26, P615, DOI 10.1007/s11274-009-0211-3
  16. Kalishwaralal K, 2010, COLLOID SURFACE B, V79, P340, DOI 10.1016/j.colsurfb.2010.04.014
  17. [Anonymous], ISOTS165502014
  18. Loo CY, 2014, BIOFOULING, V30, P773, DOI 10.1080/08927014.2014.926475
  19. Stoimenov PK, 2002, LANGMUIR, V18, P6679, DOI 10.1021/la0202374
  20. Nowack B, 2011, ENVIRON SCI TECHNOL, V45, P1177, DOI 10.1021/es103316q
  21. Schacht VJ, 2013, J APPL MICROBIOL, V114, P25, DOI 10.1111/jam.12000
  22. Shankar SS, 2003, BIOTECHNOL PROGR, V19, P1627, DOI 10.1021/bp034070w
  23. Philip D, 2009, SPECTROCHIM ACTA A, V73, P374, DOI 10.1016/j.saa.2009.02.037
  24. [Anonymous], ISOTR161972014
  25. Sanpui P, 2008, INT J FOOD MICROBIOL, V124, P142, DOI 10.1016/j.ijfoodmicro.2008.03.004
  26. Egger S, 2009, APPL ENVIRON MICROB, V75, P2973, DOI 10.1128/AEM.01658-08
  27. Shameli K, 2010, INT J NANOMED, V5, P875, DOI 10.2147/IJN.S13632
  28. Morones JR, 2005, NANOTECHNOLOGY, V16, P2346, DOI 10.1088/0957-4484/16/10/059
  29. Chaloupka K, 2010, TRENDS BIOTECHNOL, V28, P580, DOI 10.1016/j.tibtech.2010.07.006
  30. Pirnay JP, 2003, J CLIN MICROBIOL, V41, P1192, DOI 10.1128/JCM.41.3.1192-1202.2003
  31. Temgire MK, 2004, RADIAT PHYS CHEM, V71, P1039, DOI 10.1016/j.radphyschem.2003.10.016
  32. Rai MK, 2012, J APPL MICROBIOL, V112, P841, DOI 10.1111/j.1365-2672.2012.05253.x
  33. Cao XL, 2010, J MATER SCI-MATER M, V21, P2861, DOI 10.1007/s10856-010-4133-2
  34. Lok CN, 2007, J BIOL INORG CHEM, V12, P527, DOI 10.1007/s00775-007-0208-z
  35. Pileni MP, 1997, LANGMUIR, V13, P3266, DOI 10.1021/la960319q
  36. Ansari M. A., 2011, Biology and Medicine, V3, P141
  37. Ayala-Nunez NV, 2009, NANOBIOTECHNOLOGY, V5, P2, DOI 10.1007/S12030-009-9029-1
  38. Clinical and Laboratory Standards Institute, 2012, M07A9 CLSI
  39. Dawy M, 2012, AUST J BASIC APPL SC, V6, P257
  40. GiamarellosBouroulis EJ, 1997, DIAGN MICR INFEC DIS, V29, P81, DOI 10.1016/S0732-8893(97)00123-5
  41. Gong P., 2007, NANOTECHNOLOGY, V18, P604
  42. Hindler J., 1992, CLIN MICROBIOLOGY PR
  43. LEE PC, 1982, J PHYS CHEM-US, V86, P3391, DOI 10.1021/j100214a025
  44. Leite Aristides Medeiros, 2007, Revista Brasileira de Ciencias Farmaceuticas, V43, P121, DOI 10.1590/S1516-93322007000100015
  45. Solomon SD, 2007, J CHEM EDUC, V84, P322
  46. Patil Rupali S., 2012, Advances in Natural Sciences: Nanoscience & Nanotechnology, V3, DOI 10.1088/2043-6262/3/1/015013
  47. Shrivastava S, 2007, NANOTECHNOLOGY, V18
  48. Singh K, 2014, J NANOMED NANOTECHNO, V5, P192, DOI [10.4172/2157-7439.1000192, DOI 10.4172/2157-7439.1000192]
  49. Singh K, 2014, J NANOBIOTECHNOL, V12, DOI 10.1186/s12951-014-0040-x
  50. Stebounova LV, 2011, PARTICLE FIBRE TOXIC, V8
  51. Wang HS, 2005, COLLOID SURFACE A, V256, P111, DOI 10.1016/j.colsurfa.2004.12.058
  52. Zhang JT, 2005, J PHYS CHEM B, V109, P12544, DOI [10.1021/jp050471d, 10.1021/JP050471d]