Proteomic analysis of the excretory-secretory products from Strongyloides venezuelensis infective larvae: new insights for the immunodiagnosis of human strongyloidiasis

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorGONZALES, William Henry Roldan
dc.contributor.authorCOELHO, Guilherme Rabelo
dc.contributor.authorPIMENTA, Daniel Carvalho
dc.contributor.authorPAULA, Fabiana Martins de
dc.contributor.authorGRYSCHEK, Ronaldo Cesar Borges
dc.date.accessioned2022-12-21T13:22:58Z
dc.date.available2022-12-21T13:22:58Z
dc.date.issued2022
dc.description.abstractSerodiagnosis of human strongyloidiasis is a practical alternative to parasitological methods due to its high sensitivity. However, cross-reactivity with other helminth infections limits its utility, and this problem is due to the use of homologous or heterologous somatic extracts of the parasite as an antigen source. Excretory-secretory (E/S) products from Strongyloides infective larvae can be used to improve the serodiagnosis. The combined use of western blot and proteomics became an interesting strategy to identify immunological markers for the serodiagnosis of strongyloidiasis. The present study describes the proteomic analysis of the antigenic components from E/S products of S. venezuelensis infective larvae that were recognized by IgG antibodies from patients with strongyloidiasis. Our results showed that IgG antibodies from patients with strongyloidiasis recognized between 15 and 16 antigenic bands in the E/S products from S. venezuelensis that were incubated in PBS or in RPMI culture medium, respectively. Overall, antigenic bands of low and high molecular weight were more specific than those of intermediate molecular weight, which were cross-reactive. A 36-kDa antigenic band was 93% sensitive and 100% specific (a probably arginine kinase of 37 kDa), while other antigenic bands were highly sensitive but low specific. Proteomic analysis revealed differences between the protein profiles from E/S-RPMI and E/S-PBS since only one-third of all proteins identified were common in both types of E/S products. Bioinformatic analysis showed that more than 50% of the proteins from E/S products are secreted within extracellular vesicles and only a small percentage of them are actually released by the classical secretory pathway. Several components from the E/S products were identified as plasminogenbinding proteins, probably used as an immune evasion mechanism. The data provided here provide valuable information to increase understanding of E/S products from S. venezuelensis infective larvae. This may help us to find new targets for the immunodiagnosis of human strongyloidiasis.eng
dc.description.indexMEDLINEeng
dc.description.sponsorshipEdital MCT/CNPq-Brazil [142056/2018-9]
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil (FAPESP) [2013/04236-9]
dc.identifier.citationPARASITOLOGY RESEARCH, v.121, n.11, p.3155-3170, 2022
dc.identifier.doi10.1007/s00436-022-07636-y
dc.identifier.eissn1432-1955
dc.identifier.issn0932-0113
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/50531
dc.language.isoeng
dc.publisherSPRINGEReng
dc.relation.ispartofParasitology Research
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright SPRINGEReng
dc.subjectStrongyloideseng
dc.subjectExcretory-secretory productseng
dc.subjectWestern bloteng
dc.subjectAntibodyeng
dc.subjectAntigeneng
dc.subjectProteomicseng
dc.subject.otherstercoraliseng
dc.subject.otherproteineng
dc.subject.otherantigenseng
dc.subject.otheridentificationeng
dc.subject.wosParasitologyeng
dc.titleProteomic analysis of the excretory-secretory products from Strongyloides venezuelensis infective larvae: new insights for the immunodiagnosis of human strongyloidiasiseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalCOELHO, Guilherme Rabelo:Inst Butantan, Lab Bioquim & Biofis, Sao Paulo, SP, Brazil
hcfmusp.author.externalPIMENTA, Daniel Carvalho:Inst Butantan, Lab Bioquim & Biofis, Sao Paulo, SP, Brazil
hcfmusp.citation.scopus1
hcfmusp.contributor.author-fmusphcWILLIAM HENRY ROLDAN GONZALES
hcfmusp.contributor.author-fmusphcFABIANA MARTINS DE PAULA
hcfmusp.contributor.author-fmusphcRONALDO CESAR BORGES GRYSCHEK
hcfmusp.description.beginpage3155
hcfmusp.description.endpage3170
hcfmusp.description.issue11
hcfmusp.description.volume121
hcfmusp.origemWOS
hcfmusp.origem.pubmed36044090
hcfmusp.origem.scopus2-s2.0-85137248716
hcfmusp.origem.wosWOS:000847954300001
hcfmusp.publisher.cityNEW YORKeng
hcfmusp.publisher.countryUNITED STATESeng
hcfmusp.relation.referenceAyon-Nunez DA, 2018, BIOSCIENCE REP, V38, DOI 10.1042/BSR20180705eng
hcfmusp.relation.referenceBarrett J, 2009, PARASITOLOGY, V136, P1633, DOI 10.1017/S003118200900568Xeng
hcfmusp.relation.referenceBRINDLEY PJ, 1988, MOL BIOCHEM PARASIT, V28, P171, DOI 10.1016/0166-6851(88)90001-1eng
hcfmusp.relation.referenceBuonfrate D, 2020, PATHOGENS, V9, DOI 10.3390/pathogens9060468eng
hcfmusp.relation.referenceCasado L, 2019, INT J INFECT DIS, V88, P60, DOI 10.1016/j.ijid.2019.09.003eng
hcfmusp.relation.referenceCONWAY DJ, 1993, J INFECT DIS, V168, P784, DOI 10.1093/infdis/168.3.784eng
hcfmusp.relation.referenceCONWAY DJ, 1993, T ROY SOC TROP MED H, V87, P173, DOI 10.1016/0035-9203(93)90477-8eng
hcfmusp.relation.referenceCornejo-Granados F, 2019, GENOMICS, V111, P1514, DOI 10.1016/j.ygeno.2018.10.007eng
hcfmusp.relation.referenceCorral MA, 2017, PARASITOLOGY, V144, P124, DOI 10.1017/S0031182016001645eng
hcfmusp.relation.referenceCunha RA, 2017, PARASITOL INT, V66, P671, DOI 10.1016/j.parint.2017.07.001eng
hcfmusp.relation.referenceDiosdado A, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-04067-5eng
hcfmusp.relation.referenceDrurey C, 2021, MOL IMMUNOL, V137, P124, DOI 10.1016/j.molimm.2021.06.017eng
hcfmusp.relation.referenceGadahi JA, 2016, EXP PARASITOL, V171, P57, DOI 10.1016/j.exppara.2016.10.014eng
hcfmusp.relation.referenceGao H, 2016, PARASITOL RES, V115, P151, DOI 10.1007/s00436-015-4730-6eng
hcfmusp.relation.referenceGomez-Arreaza A, 2014, MOL BIOCHEM PARASIT, V193, P75, DOI 10.1016/j.molbiopara.2014.02.005eng
hcfmusp.relation.referenceGonzalez-Miguel J, 2016, TRENDS PARASITOL, V32, P325, DOI 10.1016/j.pt.2015.12.012eng
hcfmusp.relation.referenceHansen EP, 2019, J EXTRACELL VESICLES, V8, DOI 10.1080/20013078.2019.1578116eng
hcfmusp.relation.referenceLok James B, 2007, WormBook, P1eng
hcfmusp.relation.referenceMaeda Y, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-018-3266-xeng
hcfmusp.relation.referenceMaizels RM, 2018, IMMUNITY, V49, P801, DOI 10.1016/j.immuni.2018.10.016eng
hcfmusp.relation.referenceMarcilla A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045974eng
hcfmusp.relation.referenceMasoori L, 2019, T ROY SOC TROP MED H, V113, P326, DOI 10.1093/trstmh/trz006eng
hcfmusp.relation.referenceMatsumoto H, 2019, METHODS MOL BIOL, V1855, P101, DOI 10.1007/978-1-4939-8793-1_10eng
hcfmusp.relation.referenceNutman TB, 2017, PARASITOLOGY, V144, P263, DOI 10.1017/S0031182016000834eng
hcfmusp.relation.referencePonce R, 2018, EXP PARASITOL, V191, P44, DOI 10.1016/j.exppara.2018.06.001eng
hcfmusp.relation.referenceRequena-Mendez A, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002002eng
hcfmusp.relation.referenceRodpai R, 2017, PARASITOL RES, V116, P1687, DOI 10.1007/s00436-017-5443-9eng
hcfmusp.relation.referenceRodpai R, 2016, PARASITOL RES, V115, P4007, DOI 10.1007/s00436-016-5170-7eng
hcfmusp.relation.referenceGonzales WHR, 2021, PARASITOLOGY, V148, P1522, DOI 10.1017/S0031182021001207eng
hcfmusp.relation.referenceSalvador F, 2020, TROP MED INT HEALTH, V25, P281, DOI 10.1111/tmi.13352eng
hcfmusp.relation.referenceSATO Y, 1990, T ROY SOC TROP MED H, V84, P403, DOI 10.1016/0035-9203(90)90337-Eeng
hcfmusp.relation.referenceShevchenko A, 1996, ANAL CHEM, V68, P850, DOI 10.1021/ac950914heng
hcfmusp.relation.referenceSoblik H, 2011, MOL CELL PROTEOMICS, V10, DOI [10.1074/mcp.M111.010157, 10.1074/mcp.M111.010157-1]eng
hcfmusp.relation.referenceStadelmann B, 2010, INT J PARASITOL, V40, P1563, DOI 10.1016/j.ijpara.2010.05.009eng
hcfmusp.relation.referenceSudre AP, 2007, PARASITOL RES, V101, P1117, DOI 10.1007/s00436-007-0596-6eng
hcfmusp.relation.referenceTian AL, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2745-4eng
hcfmusp.relation.referenceTritten L, 2017, EXP PARASITOL, V178, P30, DOI 10.1016/j.exppara.2017.05.003eng
hcfmusp.relation.referenceTsuji N, 1997, PARASITOL RES, V83, P99, DOI 10.1007/s004360050218eng
hcfmusp.relation.referenceVarghese A, 2017, ACTA PARASITOL, V62, P775, DOI 10.1515/ap-2017-0093eng
hcfmusp.relation.referenceVasquez-Rios George, 2019, J Parasit Dis, V43, P167, DOI 10.1007/s12639-019-01090-xeng
hcfmusp.relation.referenceWang LQ, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-04186-zeng
hcfmusp.relation.referenceWilbers RHP, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1007300eng
hcfmusp.relation.referenceZhao LL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55351-zeng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublication0dff834a-32a5-45cb-993b-28d3569923ff
relation.isAuthorOfPublication5d56e1dd-5ba9-4f59-bce7-1fcdf19f3114
relation.isAuthorOfPublication7ec8d577-b8db-4d87-b541-6def85d667e6
relation.isAuthorOfPublication.latestForDiscovery0dff834a-32a5-45cb-993b-28d3569923ff
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_VIEIRA_Prognostic_Models_in_Severe_Traumatic_Brain_Injury_A_2022.PDF
Tamanho:
1.2 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)