Impact of methyl-donor micronutrient supplementation on DNA methylation patterns: A systematic review and meta-analysis of in vitro, animal and human studies

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
KARGER
Autores
MOTA, Jhulia Caroline da
RIBEIRO, Amanda A.
CARVALHO, Lucas M.
ESTEVES, Gabriel P.
SIECZKOWSKA, Sofia M.
GOESSLER, Karla F.
GUALANO, Bruno
Citação
LIFESTYLE GENOMICS, v.16, n.1, p.192-213, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: DNA methylation patterns are directly associated with diverse metabolic disorders. The status of methyl-donor micronutrients has been associated with DNA methylation levels, and altered ingestion of folate, choline, betaine, B vitamins and methionine may impact genes both globally and at the level of promoter regions. Despite this, the role of methyl-donor micronutrient supplementation on DNA methylation profiles is currently unclear. Objectives: The aims of this systematic review and meta-analysis were to identify and synthesize the evidence about methyl-donor nutrients supplementation on DNA methylation profile. Methods: A systematic literature search was performed in MEDLINE, EMBASE, SCOPUS and Web of Sciences databases with a combination of terms related to DNA methylation assessment, supplementation and methyl-donor nutrients. Studies (in vitro, animal models or human clinical trials) were included if DNA methylation levels after any kind of methyl-donor micronutrient supplementation or treatment was investigated. Studies were assessed for bias using Revised Cochrane risk-of-bias tool for randomized trials, Risk Of Bias in Non-randomized Studies of Interventions or Systematic Review Centre for Laboratory Animal Experimentation tools. Data was extracted from studies measuring DNA methylation level in any sample or tissue, following any kind of methyl-donor micronutrient supplementation or treatment. Separate random-effects meta-analyses were performed for animal model studies and human clinical trials, which examined the effects of folic acid supplementation on DNA methylation. Results: Fifty-seven studies were included in the systematic review: 18 human clinical trials, 35 in animal model and 4 in vitro studies. Concerning overall risk of bias, most of the studies were classified as ""high risk"" or ""some concerns"". Meta-analysis with meta-regression from studies in animal models showed that folic acid dose significantly affected DNA methylation and that high and very high dose showed increases in DNA methylation when compared to low doses. However, meta-analysis from human clinical trials showed that folic acid supplementation did not promote significant changes in DNA methylation when compared to placebo. Conclusion: Folic acid supplementation may change global DNA methylation levels in animals supplemented with high, as compared to low, doses. Heterogeneity in studies and supplementation protocols make it difficult to establish clinical recommendations. However, these effects, even if small, might be of clinical importance in the management of patients with diseases related to DNA hypomethylation.
Palavras-chave
DNA methylation, epigenetics, supplementation, folic acid, B vitamins
Referências
  1. Aarabi M, 2015, HUM MOL GENET, V24, P6301, DOI 10.1093/hmg/ddv338
  2. Agodi A, 2015, GENES NUTR, V10, DOI 10.1007/s12263-015-0480-4
  3. Alegra-Torres JA, 2011, EPIGENOMICS-UK, V3, P267, DOI [10.2217/EPI.11.22, 10.2217/epi.11.22]
  4. An Y, 2019, CLIN EPIGENETICS, V11, DOI 10.1186/s13148-019-0741-y
  5. Anderson OS, 2012, J NUTR BIOCHEM, V23, P853, DOI 10.1016/j.jnutbio.2012.03.003
  6. [Anonymous], 2019, Journal of Open Source Software, V4, DOI [10.21105/joss.01686, DOI 10.21105/JOSS.01686]
  7. Ba Y, 2011, EUR J CLIN NUTR, V65, P480, DOI 10.1038/ejcn.2010.294
  8. BALAGHI M, 1993, BIOCHEM BIOPH RES CO, V193, P1184, DOI 10.1006/bbrc.1993.1750
  9. Barman B, 2021, NEUROCHEM INT, V150, DOI 10.1016/j.neuint.2021.105181
  10. Barua S, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00168
  11. Basten GP, 2006, BRIT J CANCER, V94, P1942, DOI 10.1038/sj.bjc.6603197
  12. Batra V, 2014, FOOD CHEM TOXICOL, V69, P46, DOI 10.1016/j.fct.2014.03.040
  13. Baylin SB, 2011, NAT REV CANCER, V11, P726, DOI 10.1038/nrc3130
  14. Bekdash RA, 2013, ALCOHOL CLIN EXP RES, V37, P1133, DOI 10.1111/acer.12082
  15. Berdasco M, 2019, NAT REV GENET, V20, P109, DOI 10.1038/s41576-018-0074-2
  16. Bull CF, 2014, CANCER PREV RES, V7, P128, DOI 10.1158/1940-6207.CAPR-13-0264
  17. Caffrey A, 2018, AM J CLIN NUTR, V107, P566, DOI 10.1093/ajcn/nqx069
  18. Cho CE, 2015, MOL NUTR FOOD RES, V59, P476, DOI 10.1002/mnfr.201400663
  19. Choi SW, 2005, BRIT J NUTR, V93, P31, DOI 10.1079/BJN20041283
  20. Chuang JC, 2007, PEDIATR RES, V61, p24R, DOI 10.1203/pdr.0b013e3180457684
  21. Clare CE, 2019, ANNU REV ANIM BIOSCI, V7, P263, DOI 10.1146/annurev-animal-020518-115206
  22. Clark DF, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245005
  23. Cordero P, 2013, GENES NUTR, V8, P105, DOI 10.1007/s12263-012-0300-z
  24. Cordero P, 2013, MOL GENET METAB, V110, P388, DOI 10.1016/j.ymgme.2013.08.022
  25. Cravo ML, 1998, CLIN NUTR, V17, P45, DOI 10.1016/S0261-5614(98)80304-X
  26. Cribari-Neto F, 2010, J STAT SOFTW, V34, P1
  27. Crider KS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028144
  28. Cui SS, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18050990
  29. Davison JM, 2009, J BIOL CHEM, V284, P1982, DOI 10.1074/jbc.M807651200
  30. de Paula BMF, 2022, NUTR METAB, V44, P15, DOI [10.1016/j.nutos.2022.02.002, DOI 10.1016/J.NUTOS.2022.02.002]
  31. Do Amaral CL, 2011, MUTAT RES-GEN TOX EN, V722, P78, DOI 10.1016/j.mrgentox.2011.03.006
  32. Ducker GS, 2017, CELL METAB, V25, P27, DOI 10.1016/j.cmet.2016.08.009
  33. Ellingrod VL, 2015, NPJ SCHIZOPHR, V1, DOI 10.1038/npjschz.2015.46
  34. Fernández-Castilla B, 2021, J EXP EDUC, V89, P125, DOI 10.1080/00220973.2019.1582470
  35. Finnell RH, 2002, T HHS WORKSHOP DIET
  36. Gonda TA, 2012, GASTROENTEROLOGY, V142, P824, DOI 10.1053/j.gastro.2011.12.058
  37. Harrison A, 2019, ANN HUM GENET, V83, P23, DOI 10.1111/ahg.12281
  38. Hooijmans CR, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-43
  39. Huang YF, 2014, INT J MOL SCI, V15, P6298, DOI 10.3390/ijms15046298
  40. Ideraabdullah FY, 2018, PHYSIOL REV, V98, P667, DOI 10.1152/physrev.00010.2017
  41. Ingrosso D, 2003, LANCET, V361, P1693, DOI 10.1016/S0140-6736(03)13372-7
  42. Irwin RE, 2019, CLIN EPIGENETICS, V11, DOI 10.1186/s13148-019-0618-0
  43. Jacob RA, 1998, J NUTR, V128, P1204, DOI 10.1093/jn/128.7.1204
  44. Johnson IT, 2008, FOOD CHEM TOXICOL, V46, P1346, DOI 10.1016/j.fct.2007.09.101
  45. Jung AY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024976
  46. Kim JM, 2009, J NUTR BIOCHEM, V20, P172, DOI 10.1016/j.jnutbio.2008.01.010
  47. Kit AH, 2012, BIOCHIMIE, V94, P2314, DOI 10.1016/j.biochi.2012.07.014
  48. Kok DEG, 2015, CLIN EPIGENETICS, V7, DOI 10.1186/s13148-015-0154-5
  49. Korsmo HW, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.841787
  50. KotsopoulosJ SohnKJ, GENOMIC DNA METHYLAT, P1
  51. Kulkarni A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017706
  52. Li W, 2018, J NUTR BIOCHEM, V59, P76, DOI 10.1016/j.jnutbio.2018.05.010
  53. Li W, 2018, NUTRIENTS, V10, DOI 10.3390/nu10030292
  54. Li Y, 2018, PHYSIOL GENOMICS, V50, P158, DOI 10.1152/physiolgenomics.00094.2017
  55. Luan Y, 2021, MOL NUTR FOOD RES, V65, DOI 10.1002/mnfr.202100197
  56. Ly A, 2016, J NUTR BIOCHEM, V33, P103, DOI 10.1016/j.jnutbio.2016.03.018
  57. Ly A, 2012, ANTIOXID REDOX SIGN, V17, P302, DOI 10.1089/ars.2012.4554
  58. Ly L, 2017, MOL HUM REPROD, V23, P461, DOI 10.1093/molehr/gax029
  59. Lyko F, 2018, NAT REV GENET, V19, P81, DOI 10.1038/nrg.2017.80
  60. Lyon P, 2020, NUTRIENTS, V12, DOI 10.3390/nu12092867
  61. Ma BS, 2014, NUCLEIC ACIDS RES, V42, P3515, DOI 10.1093/nar/gkt1380
  62. Mahajan A, 2021, MOL REPROD DEV, V88, P437, DOI 10.1002/mrd.23477
  63. Miousse IR, 2017, GENES NUTR, V12, DOI 10.1186/s12263-017-0576-0
  64. Morris SB, 2008, ORGAN RES METHODS, V11, P364, DOI 10.1177/1094428106291059
  65. Nash AJ, 2019, FASEB J, V33, P833, DOI 10.1096/fj.201800400R
  66. Niculescu, DIETARY CHOLINE DEFI
  67. O'Reilly SL, 2016, J NUTR, V146, P933, DOI 10.3945/jn.115.222547
  68. Otero NKH, 2012, ALCOHOL CLIN EXP RES, V36, P1701, DOI 10.1111/j.1530-0277.2012.01784.x
  69. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.jclinepi.2021.03.001, 10.1136/bmj.n160, 10.1016/j.ijsu.2021.105906, 10.1186/s13643-021-01626-4, 10.26633/RPSP.2022.112, 10.1016/j.jclinepi.2021.02.003]
  70. Pan, 2021, CANCER DISCOV
  71. Park HJ, 2017, OBES RES CLIN PRACT, V11, P665, DOI 10.1016/j.orcp.2017.06.004
  72. Partearroyo T, 2010, ANN NUTR METAB, V56, P143, DOI 10.1159/000275963
  73. Penailillo R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121098
  74. Pesqueda-Cendejas K, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24043171
  75. Pizzolo F, 2011, J AM COLL NUTR, V30, P11, DOI 10.1080/07315724.2011.10719939
  76. Pogribny IP, 2009, MUTAT RES-FUND MOL M, V669, P56, DOI 10.1016/j.mrfmmm.2009.05.003
  77. Price RJ, 2015, NUTR RES, V35, P532, DOI 10.1016/j.nutres.2015.04.009
  78. Pufulete M, 2005, GUT, V54, P648, DOI 10.1136/gut.2004.054718
  79. Rahimi S, 2019, HUM REPROD, V34, P851, DOI 10.1093/humrep/dez036
  80. Rampersaud GC, 2000, AM J CLIN NUTR, V72, P998
  81. Richmond RC, 2018, INT J EPIDEMIOL, V47, P928, DOI 10.1093/ije/dyy032
  82. Samblas M, 2019, EPIGENETICS-US, V14, P421, DOI 10.1080/15592294.2019.1595297
  83. Sie KKY, 2013, MOL NUTR FOOD RES, V57, P677, DOI 10.1002/mnfr.201200186
  84. Sterne JAC, 2016, BMJ-BRIT MED J, V355, DOI 10.1136/bmj.i4919
  85. van den Donk M, 2007, J NUTR, V137, P2114, DOI 10.1093/jn/137.9.2114
  86. Van den Noortgate W., 2015, Behav Res Methods, V47, P1274, DOI 10.3758/S13428-014-0527-2
  87. van der Kooi EL, 2006, NEUROMUSCULAR DISORD, V16, P766, DOI 10.1016/j.nmd.2006.08.005
  88. Vordenbäumen S, 2021, LUPUS, V30, P1773, DOI 10.1177/09612033211034559
  89. Wang XY, 2021, GENES NUTR, V16, DOI 10.1186/s12263-020-00681-1
  90. Waterland RA, 2006, GENESIS, V44, P401, DOI 10.1002/dvg.20230
  91. Xue G, 2017, ONCOTARGET, V8, P51387, DOI 10.18632/oncotarget.17988
  92. Yang S, 2020, J SCI FOOD AGR, V100, P1486, DOI 10.1002/jsfa.10156
  93. Yang X, 2017, NUTRIENTS, V9, DOI 10.3390/nu9090935
  94. Zhao NN, 2018, J NUTR BIOCHEM, V54, P105, DOI 10.1016/j.jnutbio.2017.12.003
  95. Zhao NN, 2017, MOL NUTR FOOD RES, V61, DOI 10.1002/mnfr.201600940