Effectiveness of mechanical treatment with customized insole and minimalist flexible footwear for women with calcaneal spur: randomized controlled trial

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
Citação
BMC MUSCULOSKELETAL DISORDERS, v.23, n.1, article ID 773, 14p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Backround: Calcaneal spurs are described as bony outgrowths arising on medial calcaneal, where inappropriate footwear can promote disease progression. Objective: Investigate the effectiveness of mechanical treatment with customized insole and minimalist flexible footwear during gait training program in women with calcaneal spur. Methods: Design: A single-blinded, randomized and controlled trial. Setting: Biomechanics laboratory. Participants: Forty-three women, 29 with calcaneal spur and 14 control. Intervention: Gait training program with use of the minimalist flexible footwear (MFG n = 15, age: 48.9 +/- 9.4, height: 1.61 +/- 0.1, BMI: 32.1 +/- 7.0) and customized insole on footwear (COIG n = 14, age: 50.3 +/- 5.8, height: 1.62 +/- 0.1, BMI: 32.2 +/- 4.3) and control (CG n = 14, age: 47.8 +/- 8.6, height: 1.63 +/- 0.1, BMI: 27.5 +/- 4.5), followed of the evaluations: baseline (T0) and after three (T3) and six (T6) months. Duration of the intervention was of the six months consecutive for at least 42 h per week (six hours a day, seven days a week). Outcome primary were calcaneus pain (visual analogue scale), Foot Function Index (FFI), Foot Health Status Questionnaire (FHSQ-Br) and 6-min walk test (6MWT). Secondary was plantar pressure distribution by a pressure platform system during gait and static index foot posture (FPI). Statistical analysis: analysis of variance for repeated measure and between groups were used to detect treatment-time interactions (alpha = 5%). Effect size with D Cohen's also was used between T0 and after six (T6) months of intervention. Results: The MFG and COIG were effective at reducing pain after six months (MFG: 2.5-4.5 CI, p = 0.001; COIG: 1.5-3.5 CI, p = 0.011). The FFI and FHSQ-Br showed improvements with MFG and COIG after T6 (MFG: 13.7-15.4 CI, p = 0.010; COIG: 11.3-15.0 CI, p = 0.001). The 6MWT increased with MFG (589.3-622.7 CI) and COIG (401.3-644.7 CI) and foot pronation was decreased after T3 and T6 MFG (FPI Right: 4.2-5.4 CI; Left: 3.6-5.4 CI) COIG (FPI Right: 3.4-6.8 CI; Left: 3.3-5.7 CI). The contact area reduced on forefoot and rearfoot with MFG and GOIG and midfoot and rearfoot with MFG. Maximum force was reduced on foot with MFG after T3 and T6. The peak pressure was reduced on the forefoot with MFG and COIG and on midfoot and rearfoot with MFG. Conclusions: The mechanical treatment with customized insole and minimalist flexible footwear during gait training program during six months in women with calcaneal spur reduced the calcaneus pain, increased function and health feet and reduced plantar load on the rearfoot, midfoot and forefoot. However, the footwear alone was more effective than when combined customized insole, given the greater efficacy on clinical and biomechanical aspects.
Palavras-chave
Foot, Pain, Insoles, Footwear, Gait, Training, Calcaneus spur
Referências
  1. Abreu MR, 2003, SKELETAL RADIOL, V32, P13, DOI 10.1007/s00256-002-0585-x
  2. Alshami AM, 2008, MANUAL THER, V13, P103, DOI 10.1016/j.math.2007.01.014
  3. Bergmann J N, 1990, Clin Podiatr Med Surg, V7, P243
  4. Beytemur O, 2018, ACTA ORTHOP TRAUMATO, V52, P367, DOI 10.1016/j.aott.2018.06.013
  5. Cermak C, 2015, ANTHROPOL ANZ, V72, P107, DOI 10.1127/anthranz/2014/0403
  6. Chia JKK, 2009, ANN ACAD MED SINGAP, V38, P869
  7. Chundru U, 2008, SKELETAL RADIOL, V37, P505, DOI 10.1007/s00256-008-0455-2
  8. Cohena-Jimenez M, 2021, CLIN REHABIL, V35, P740, DOI 10.1177/0269215520976619
  9. Cronin NJ, 2012, J APPL PHYSIOL, V112, P1054, DOI 10.1152/japplphysiol.01402.2011
  10. EBBELING CJ, 1994, J ORTHOP SPORT PHYS, V19, P190, DOI 10.2519/jospt.1994.19.4.190
  11. Ferreira AFB, 2008, CLINICS, V63, P595, DOI 10.1590/S1807-59322008000500005
  12. Fong DTP, 2012, CLIN BIOMECH, V27, P1072, DOI 10.1016/j.clinbiomech.2012.08.003
  13. Gross MT, 2002, J ORTHOP SPORT PHYS, V32, P149, DOI 10.2519/jospt.2002.32.4.149
  14. Hamilton D M, 2000, J Cardiopulm Rehabil, V20, P156, DOI 10.1097/00008483-200005000-00003
  15. Hong WH, 2005, FOOT ANKLE INT, V26, P1042, DOI 10.1177/107110070502601208
  16. Hutchins S, 2009, Foot (Edinb), V19, P165, DOI 10.1016/j.foot.2009.01.001
  17. Irving DB, 2007, BMC MUSCULOSKEL DIS, V8, DOI 10.1186/1471-2474-8-41
  18. Johal K S, 2012, Foot Ankle Surg, V18, P39, DOI 10.1016/j.fas.2011.03.003
  19. Kirkpatrick J, 2017, J ANAT, V230, P743, DOI 10.1111/joa.12607
  20. Kullar Jagdev Singh, 2014, Int J Appl Basic Med Res, V4, pS13, DOI 10.4103/2229-516X.140709
  21. Kumai T, 2002, J RHEUMATOL, V29, P1957
  22. Kuyucu E, 2015, INT J SURG, V21, P28, DOI 10.1016/j.ijsu.2015.06.078
  23. League AC, 2008, FOOT ANKLE INT, V29, P358, DOI 10.3113/FAI.2008.0358
  24. Lee YH, 2005, APPL ERGON, V36, P355, DOI 10.1016/j.apergo.2004.11.001
  25. Lemont H, 2003, J AM PODIAT MED ASSN, V93, P234, DOI 10.7547/87507315-93-3-234
  26. Li J, 2007, CLIN ANAT, V20, P950, DOI 10.1002/ca.20548
  27. Martinez BR, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3507-4
  28. McMillan AM, 2009, J FOOT ANKLE RES, V2, DOI 10.1186/1757-1146-2-32
  29. Menz HB, 2008, J FOOT ANKLE RES, V1, DOI 10.1186/1757-1146-1-7
  30. Muth Christopher C, 2017, JAMA, V318, P400, DOI 10.1001/jama.2017.5806
  31. Ozdemir H, 2004, J AM PODIAT MED ASSN, V94, P47
  32. Pohl MB, 2009, CLIN J SPORT MED, V19, P372, DOI 10.1097/JSM.0b013e3181b8c270
  33. Rasenberg N, 2021, BRIT J SPORT MED, V55, P272, DOI 10.1136/bjsports-2019-101409
  34. Redmond AC, 2008, J FOOT ANKLE RES, V1, DOI 10.1186/1757-1146-1-6
  35. Reints R, 2017, GAIT POSTURE, V58, P287, DOI 10.1016/j.gaitpost.2017.08.008
  36. Ribeiro AP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136971
  37. Ribeiro AP, 2011, CLINICS, V66, P1027, DOI 10.1590/S1807-59322011000600018
  38. Ridge ST, 2019, MED SCI SPORT EXER, V51, P104, DOI 10.1249/MSS.0000000000001751
  39. RIEPERT T, 1995, ROFO FORTSCHR RONTG, V162, P502, DOI 10.1055/s-2007-1015925
  40. Schwartz Emily N, 2014, Perm J, V18, pe105, DOI 10.7812/TPP/13-113
  41. Seligman DA, 2003, ARCH PHYS MED REHAB, V84, P1564, DOI 10.1016/S0003-9993(03)00363-0
  42. Serdar CC, 2021, BIOCHEM MEDICA, V31, DOI 10.11613/BM.2021.010502
  43. Shakoor N, 2008, ARTHRIT RHEUM-ARTHR, V59, P1214, DOI 10.1002/art.24017
  44. Shakoor N, 2013, ARTHRITIS RHEUM-US, V65, P1282, DOI 10.1002/art.37896
  45. Shakoor N, 2010, ARTHRIT CARE RES, V62, P917, DOI 10.1002/acr.20165
  46. Smith S., 2007, FOOT, V17, P25, DOI 10.1016/J.FOOT.2006.10.002
  47. Thomas JL, 2010, J FOOT ANKLE SURG, V49, pS1, DOI 10.1053/j.jfas.2010.01.001
  48. Tong KB., 2010, AM J ORTHOPSYCHIAT, V19, P165, DOI [10.1016/j.foot.2009.01.001, DOI 10.1016/J.FOOT.2009.01.001]
  49. Toumi H, 2014, BMC MUSCULOSKEL DIS, V15, DOI 10.1186/1471-2474-15-87
  50. Trombini-Souza F, 2015, CLIN BIOMECH, V30, P1194, DOI 10.1016/j.clinbiomech.2015.08.004
  51. Trombini-Souza F, 2011, GAIT POSTURE, V34, P126, DOI 10.1016/j.gaitpost.2011.03.026
  52. WASSERTHEIL S, 1970, BIOMETRICS, V26, P588, DOI 10.2307/2529115
  53. Wibowo Dwi Basuki, 2017, J Phys Ther Sci, V29, P2068, DOI 10.1589/jpts.29.2068
  54. Zhou BH, 2015, J FOOT ANKLE SURG, V54, P594, DOI 10.1053/j.jfas.2014.11.009