Novel Role of CETP in Macrophages: Reduction of Mitochondrial Oxidants Production and Modulation of Cell Immune-Metabolic Profile

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
DORIGHELLO, Gabriel G.
ASSIS, Leandro H. P.
RENTZ, Thiago
MORARI, Joseane
RIDGWAY, Neale D.
VERCESI, Anibal E.
OLIVEIRA, Helena C. F.
Citação
ANTIOXIDANTS, v.11, n.9, article ID 1734, 17p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Plasma cholesteryl ester transfer protein (CETP) activity diminishes HDL-cholesterol levels and thus may increase atherosclerosis risk. Experimental evidence suggests CETP may also exhibit anti-inflammatory properties, but local tissue-specific functions of CETP have not yet been clarified. Since oxidative stress and inflammation are major features of atherogenesis, we investigated whether CETP modulates macrophage oxidant production, inflammatory and metabolic profiles. Comparing macrophages from CETP-expressing transgenic mice and non-expressing littermates, we observed that CETP expression reduced mitochondrial superoxide anion production and H2O2 release, increased maximal mitochondrial respiration rates, and induced elongation of the mitochondrial network and expression of fusion-related genes (mitofusin-2 and OPA1). The expression of pro-inflammatory genes and phagocytic activity were diminished in CETP-expressing macrophages. In addition, CETP-expressing macrophages had less unesterified cholesterol under basal conditions and after exposure to oxidized LDL, as well as increased HDL-mediated cholesterol efflux. CETP knockdown in human THP1 cells increased unesterified cholesterol and abolished the effects on mitofusin-2 and TNF alpha. In summary, the expression of CETP in macrophages modulates mitochondrial structure and function to promote an intracellular antioxidant state and oxidative metabolism, attenuation of pro-inflammatory gene expression, reduced cholesterol accumulation, and phagocytosis. These localized functions of CETP may be relevant for the prevention of atherosclerosis and other inflammatory diseases.
Palavras-chave
CETP, macrophage, mitochondria, oxidants, inflammation, cholesterol
Referências
  1. Assis LHD, 2022, FRONT MOL BIOSCI, V9, DOI 10.3389/fmolb.2022.839428
  2. Barter PJ, 2007, NEW ENGL J MED, V357, P2109, DOI 10.1056/NEJMoa0706628
  3. Cappel DA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136915
  4. Cazita PM, 2008, SHOCK, V30, P590, DOI 10.1097/SHK.0b013e31816e30fd
  5. CHAJEK T, 1978, P NATL ACAD SCI USA, V75, P3445, DOI 10.1073/pnas.75.7.3445
  6. Chinetti-Gbaguidi G, 2015, NAT REV CARDIOL, V12, P10, DOI 10.1038/nrcardio.2014.173
  7. Collet X, 1999, J LIPID RES, V40, P1185
  8. Connolly NMC, 2018, CELL DEATH DIFFER, V25, P542, DOI 10.1038/s41418-017-0020-4
  9. de Lima C, 2008, EUR J APPL PHYSIOL, V104, P957, DOI 10.1007/s00421-008-0849-9
  10. Emre Y, 2010, FEBS LETT, V584, P1437, DOI 10.1016/j.febslet.2010.03.014
  11. Erdman LK, 2009, J IMMUNOL, V183, P6452, DOI 10.4049/jimmunol.0901374
  12. Flynn JM, 2011, FREE RADICAL BIO MED, V50, P866, DOI 10.1016/j.freeradbiomed.2010.12.030
  13. Francone OL, 1996, J LIPID RES, V37, P1268
  14. Grion CMC, 2010, EUR J CLIN INVEST, V40, P330, DOI 10.1111/j.1365-2362.2010.02269.x
  15. HPS3 TIMI55-REVEAl Collaborative, 2017, NEW ENGL J MED, V377, P1217, DOI 10.1056/NEJMoa1706444
  16. Ichinohe T, 2013, P NATL ACAD SCI USA, V110, P17963, DOI 10.1073/pnas.1312571110
  17. Ishigami M, 1997, EUR J CLIN INVEST, V27, P285, DOI 10.1046/j.1365-2362.1997.1040657.x
  18. Jezek J, 2018, ANTIOXIDANTS-BASEL, V7, DOI 10.3390/antiox7010013
  19. Koshiba T, 2004, SCIENCE, V305, P858, DOI 10.1126/science.1099793
  20. Kowaltowski AJ, 2009, FREE RADICAL BIO MED, V47, P333, DOI 10.1016/j.freeradbiomed.2009.05.004
  21. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  22. Lozhkin A, 2017, J MOL CELL CARDIOL, V102, P10, DOI 10.1016/j.yjmcc.2016.12.004
  23. Martinon F, 2010, EUR J IMMUNOL, V40, P616, DOI 10.1002/eji.200940168
  24. Matsuura F, 2006, J CLIN INVEST, V116, P1435, DOI 10.1172/JCI27602
  25. Mills EL, 2017, NAT IMMUNOL, V18, P488, DOI 10.1038/ni.3704
  26. Morehouse LA, 2007, J LIPID RES, V48, P1263, DOI 10.1194/jlr.M600332-JLR200
  27. Oliveira HCF, 2020, ADV EXP MED BIOL, V1276, P15, DOI 10.1007/978-981-15-6082-8_2
  28. Oliveira HCF, 2020, MOL ASPECTS MED, V71, DOI 10.1016/j.mam.2019.100840
  29. Pavlou S, 2017, J INFLAMM-LOND, V14, DOI 10.1186/s12950-017-0151-x
  30. Quintao ECR, 2010, ATHEROSCLEROSIS, V209, P1, DOI 10.1016/j.atherosclerosis.2009.08.002
  31. Robinet P, 2010, J LIPID RES, V51, P3364, DOI 10.1194/jlr.D007336
  32. Rousset S, 2006, CYTOKINE, V35, P135, DOI 10.1016/j.cyto.2006.07.012
  33. Santana KG, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.684076
  34. Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/nmeth.2019, 10.1038/NMETH.2019]
  35. Stewart CR, 2010, NAT IMMUNOL, V11, P155, DOI 10.1038/ni.1836
  36. Sun Y, 2009, CIRC RES, V104, P455, DOI 10.1161/CIRCRESAHA.108.182568
  37. Trudeau K, 2011, INVEST OPHTH VIS SCI, V52, P8657, DOI 10.1167/iovs.11-7934
  38. Tschopp J, 2011, EUR J IMMUNOL, V41, P1196, DOI 10.1002/eji.201141436
  39. Van den Bossche J, 2017, TRENDS IMMUNOL, V38, P395, DOI 10.1016/j.it.2017.03.001
  40. Venancio TM, 2016, MEDIAT INFLAMM, V2016, DOI 10.1155/2016/1784014
  41. Villard EF, 2012, ARTERIOSCL THROM VAS, V32, P2341, DOI 10.1161/ATVBAHA.112.252841
  42. Viola A, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01462
  43. Wang Y, 2017, ARTERIOSCL THROM VAS, V37, pE99, DOI 10.1161/ATVBAHA.117.309580
  44. West AP, 2011, NAT REV IMMUNOL, V11, P389, DOI 10.1038/nri2975
  45. Yvan-Charvet L, 2008, CIRCULATION, V118, P1837, DOI 10.1161/CIRCULATIONAHA.108.793869
  46. Zhu X, 2008, J BIOL CHEM, V283, P22930, DOI 10.1074/jbc.M801408200