Functional and Neural Correlates Associated with Conditioned Pain Modulation in Patients with Chronic Knee Osteoarthritis Pain: A Cross-Sectional Study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
PACHECO-BARRIOS, Kevin
VASQUEZ-AVILA, Karen
REBELLO-SANCHEZ, Ingrid
PARENTE, Joao
CASTELO-BRANCO, Luis
MARDUY, Anna
MELO, Paulo S. de
Citação
LIFE-BASEL, v.13, n.8, article ID 1697, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In this study, we aimed to assess the factors that predict a dysfunctional conditioned pain modulation (CPM) in chronic knee OA. Methods: This is a cross-sectional analysis of patients with chronic knee OA from a prospective cohort study in Brazil (n = 85). We performed linear and logistic multivariate regression models using the purposeful selection approach to test the relationship between the CPM in both knees (average) as a dependent variable and demographics, clinical, and neurophysiological as independent variables. Results: A significant negative association between WOMAC pain scores and CPM (beta: 0.13) was found. This association was modified by the subjects' race, being stronger in the non-white subjects. In our logistic regression models, pain intensity indexed with the WOMAC pain scale remained a significant association with dichotomized CPM. Furthermore, a significant CPM association with balance, indexed with the Berg Balance score, was evidenced ( beta: 0.04). Neurophysiological variables showed a significant negative relationship with CPM, such as the relative power of delta oscillations in the frontal area ( beta: 3.11) and central area ( beta: 3.23). There was no significant relationship between CPM and the following domains: cognitive, emotion, sleep, opioid receptor polymorphisms, and intrinsic variables of OA disease. There was no association of CPM with TMS-indexed inhibitory markers. Conclusions: These results may indicate that less function of the pain descending inhibitory system in patients with OA is correlated with higher activity-related pain (WOMAC), less balance, and cortical plasticity especially with increased low-frequency (delta) brain oscillations. These associations seem modified by race.
Palavras-chave
conditioned pain modulation, osteoarthritis, pain, race, balance
Referências
  1. [Anonymous], 1999, VER BRAS REUMATOL, DOI 10.1590/S0482-50042010000300005
  2. Arendt-Nielsen L, 2010, PAIN, V149, P573, DOI 10.1016/j.pain.2010.04.003
  3. Asthana MK, 2016, INT J NEUROPSYCHOPH, V19, DOI 10.1093/ijnp/pyv137
  4. BELLAMY N, 1988, J RHEUMATOL, V15, P1833
  5. Botega NJ, 1995, REV SAUDE PUBL, V29, P355, DOI 10.1590/S0034-89101995000500004
  6. Brekke M, 2002, SOC SCI MED, V54, P221, DOI 10.1016/S0277-9536(01)00018-1
  7. Brietzke AP, 2019, MEDICINE, V98, DOI 10.1097/MD.0000000000013477
  8. Bursac Z, 2008, SOURCE CODE BIOL MED, V3, DOI 10.1186/1751-0473-3-17
  9. Carlesso LC, 2022, ARTHRIT CARE RES, V74, P107, DOI 10.1002/acr.24437
  10. Damien J, 2018, INT REV NEUROBIOL, V139, P255, DOI 10.1016/bs.irn.2018.07.024
  11. Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
  12. Delorme A, 2007, NEUROIMAGE, V34, P1443, DOI 10.1016/j.neuroimage.2006.11.004
  13. Eachus J, 1999, J EPIDEMIOL COMMUN H, V53, P603, DOI 10.1136/jech.53.10.603
  14. Edwards RR, 2016, BMC MUSCULOSKEL DIS, V17, DOI 10.1186/s12891-016-1124-6
  15. Fernandes C, 2019, PAIN, V160, P2679, DOI 10.1097/j.pain.0000000000001664
  16. Fingleton C, 2015, OSTEOARTHR CARTILAGE, V23, P1043, DOI 10.1016/j.joca.2015.02.163
  17. Foucher KC, 2019, J ORTHOP RES, V37, P136, DOI 10.1002/jor.24159
  18. Freire Manoela Ávila, 2014, J. bras. psiquiatr., V63, P281, DOI 10.1590/0047-2085000000036
  19. Freitas S., 2010, AVALIA O PSICOL GICA, V9, P345
  20. Georgopoulos V, 2019, PAIN, V160, P1920, DOI 10.1097/j.pain.0000000000001590
  21. Goudman L, 2017, J PAIN RES, V10, P2675, DOI 10.2147/JPR.S145783
  22. Graven-Nielsen T, 2012, ARTHRITIS RHEUM-US, V64, P2907, DOI 10.1002/art.34466
  23. Hatfield GL, 2016, PHYS THER, V96, P324, DOI 10.2522/ptj.20150025
  24. Hirase T, 2020, J AM MED DIR ASSOC, V21, P597, DOI 10.1016/j.jamda.2020.02.011
  25. Holley AL, 2017, PAIN, V158, P794, DOI 10.1097/j.pain.0000000000000817
  26. Hurley R.S.J.A., 2022, OSTEOARTHRITIS
  27. Huynh V, 2022, NEUROIMAGE, V247, DOI 10.1016/j.neuroimage.2021.118742
  28. Imamura M., 2023, PLOS ONE, V19, P158
  29. Janevic MR, 2017, J PAIN, V18, P1459, DOI 10.1016/j.jpain.2017.07.005
  30. Jensen KB, 2016, PAIN, V157, P1279, DOI 10.1097/j.pain.0000000000000517
  31. JOHNS MW, 1992, SLEEP, V15, P376, DOI 10.1093/sleep/15.4.376
  32. Junior J.S., 2008, ACTA FISI TRICA, V15, P31, DOI 10.5935/0104-7795.20080001
  33. KELLGREN JH, 1957, ANN RHEUM DIS, V16, P494, DOI 10.1136/ard.16.4.494
  34. Kennedy DL, 2016, PAIN, V157, P2410, DOI 10.1097/j.pain.0000000000000689
  35. Knyazev GG, 2007, NEUROSCI BIOBEHAV R, V31, P377, DOI 10.1016/j.neubiorev.2006.10.004
  36. Knyazev GG, 2012, NEUROSCI BIOBEHAV R, V36, P677, DOI 10.1016/j.neubiorev.2011.10.002
  37. Kurien T, 2018, J PAIN, V19, P1329, DOI 10.1016/j.jpain.2018.05.011
  38. Lautenbacher S, 2008, PAIN, V140, P429, DOI 10.1016/j.pain.2008.09.019
  39. Malcolm MP, 2006, CLIN NEUROPHYSIOL, V117, P1037, DOI 10.1016/j.clinph.2006.02.005
  40. Mills SEE, 2019, BRIT J ANAESTH, V123, pE273, DOI 10.1016/j.bja.2019.03.023
  41. Nuwer MR, 1999, EEG CL N SU, V50, P150
  42. Pereira C., 2016, COMMITMENT EQUITY HD
  43. Peterka RJ, 2018, HAND CLINIC, V159, P27, DOI 10.1016/B978-0-444-63916-5.00002-1
  44. Petersen KK, 2017, CLIN J PAIN, V33, P1081, DOI 10.1097/AJP.0000000000000495
  45. PODSIADLO D, 1991, J AM GERIATR SOC, V39, P142, DOI 10.1111/j.1532-5415.1991.tb01616.x
  46. Ramaswamy S, 2021, NEUROPHYSIOL CLIN, V51, P197, DOI 10.1016/j.neucli.2020.11.002
  47. Reidler JS, 2012, J PAIN, V13, P450, DOI 10.1016/j.jpain.2012.01.005
  48. Rossini PM, 2015, CLIN NEUROPHYSIOL, V126, P1071, DOI 10.1016/j.clinph.2015.02.001
  49. Schaible HG, 2012, CURR RHEUMATOL REP, V14, P549, DOI 10.1007/s11926-012-0279-x
  50. Schwenkreis P, 2003, NEUROLOGY, V61, P515, DOI 10.1212/WNL.61.4.515
  51. Seeley MK, 2022, J SPORT REHABIL, V31, P684, DOI 10.1123/jsr.2021-0020
  52. Simis M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-04957-x
  53. Simis M, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.695406
  54. Simis M, 2022, PAIN MED, V23, P955, DOI 10.1093/pm/pnab124
  55. Steele B, 1996, J Cardiopulm Rehabil, V16, P25
  56. Steriade M, 2006, NEUROSCIENCE, V137, P1087, DOI 10.1016/j.neuroscience.2005.10.029
  57. Stevenson TJ, 2001, AUST J PHYSIOTHER, V47, P29, DOI 10.1016/S0004-9514(14)60296-8
  58. Streff A, 2011, EUR J PAIN, V15, P45, DOI 10.1016/j.ejpain.2010.05.011
  59. Sullivan MJL, 1995, PSYCHOL ASSESSMENT, V7, P524, DOI 10.1037/1040-3590.7.4.524
  60. Tarragó MDL, 2016, MEDICINE, V95, DOI 10.1097/MD.0000000000003353
  61. Tavares DRB, 2021, BRAIN STIMUL, V14, P477, DOI 10.1016/j.brs.2021.02.018
  62. Teixeira PEP, 2020, SCAND J PAIN, V20, P651, DOI 10.1515/sjpain-2020-0016
  63. Teixeira PEP, 2022, PAIN MED, V23, P558, DOI 10.1093/pm/pnab293
  64. Tennant PWG, 2021, INT J EPIDEMIOL, V50, P620, DOI 10.1093/ije/dyaa213
  65. Torrance GW, 2001, MED DECIS MAKING, V21, P329, DOI 10.1177/02729890122062622
  66. Uygur-Kucukseymen E, 2020, NEUROPHYSIOL CLIN, V50, P279, DOI 10.1016/j.neucli.2020.06.002
  67. Villafañe JH, 2020, OSTEOARTHR CARTILAGE, V28, P572, DOI [10.1016/j/joca.2020.02.836, 10.1016/j.joca.2020.02.836]
  68. Villafañe JH, 2019, CLIN RHEUMATOL, V38, P583, DOI 10.1007/s10067-018-4270-4
  69. Yarnitsky D, 2014, PAIN, V155, P663, DOI 10.1016/j.pain.2013.11.005
  70. Yarnitsky D, 2010, CURR OPIN ANESTHESIO, V23, P611, DOI 10.1097/ACO.0b013e32833c348b