Association between ultra-processed food consumption and the incidence of type 2 diabetes: the ELSA-Brasil cohort

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
CANHADA, Scheine L.
VIGO, Alvaro
LUFT, Vivian C.
FONSECA, Maria de Jesus M. da
GIATTI, Luana
MOLINA, Maria del Carmen B.
DUNCAN, Bruce B.
SCHMIDT, Maria Ines
Citação
DIABETOLOGY & METABOLIC SYNDROME, v.15, n.1, article ID 233, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Ultra-processed food (UPF) consumption increases the risk of type 2 diabetes in various high-income countries, with some variation in the magnitude across studies. Our objective was to investigate the association of UPF consumption and specific subgroups with incident type 2 diabetes in Brazilian adults. Methods The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) is a multicenter cohort study of 15,105 adults (35-74 years) enrolled in public institutions in Brazil (2008-2010). We followed participants with two clinic visits (2012-2014; 2017-2019) and annual telephone surveillance. After excluding those with diabetes at baseline, who died or were lost in the follow-up, with missing data, with implausible energy food intake, or reporting bariatric surgery, there were 10,202 participants. We used the NOVA classification to assess UPF consumption based on a food frequency questionnaire. We defined type 2 diabetes by self-report, medication use, or comprehensive laboratory tests. We estimated relative risks (RR) and 95% confidence intervals (95% CI) using robust Poisson regression. Results Median UPF consumption was 372 g/day. Over 8.2 (0.7) years of follow-up, we detected 1799 (17.6%) incident cases. After adjustment for socio-demographics, family history of diabetes, and behavioral risk factors, comparing the fourth (>= 566 g/day) with the first (< 236 g/day) quartile of UPF distribution, RR was 1.24 (1.10-1.39); every 150 g/ day increments in UPF consumption resulted in a RR of 1.05 (1.03-1.07). Reclassifying natural beverages with added sweeteners as UPF increased risk (RR 1.40; 1.25-1.58). Among UPF subgroupings, consumption of processed meats and sweetened beverages increased diabetes risk, while yogurt and dairy sweets decreased the risk (p < 0.05). Conclusions UPF consumption increased the incidence of type 2 diabetes in Brazilian adults, with heterogeneity across specific food items. These findings add to previous evidence for the role of UPFs in the development of diabetes and other chronic diseases, supporting recommendations to avoid their intake in diabetes prevention and management.
Palavras-chave
Epidemiology, Non-communicable diseases, Public health, Type 2 diabetes, Ultra-processed food
Referências
  1. Alvarez-Bueno C, 2019, ADV NUTR, V10, pS154, DOI 10.1093/advances/nmy107
  2. Aquino EML, 2012, AM J EPIDEMIOL, V175, P315, DOI 10.1093/aje/kwr294
  3. Aune D, 2013, AM J CLIN NUTR, V98, P1066, DOI 10.3945/ajcn.113.059030
  4. Azad MB, 2017, CAN MED ASSOC J, V189, pE929, DOI 10.1503/cmaj.161390
  5. Bensenor IM, 2013, REV SAUDE PUBL, V47, P37, DOI 10.1590/S0034-8910.2013047003780
  6. Bhattacharyya S, 2012, DIABETOLOGIA, V55, P194, DOI 10.1007/s00125-011-2333-z
  7. Canhada SL, 2020, PUBLIC HEALTH NUTR, V23, P1076, DOI 10.1017/S1368980019002854
  8. Cani PD, 2015, TRENDS ENDOCRIN MET, V26, P273, DOI 10.1016/j.tem.2015.03.009
  9. Chen Z, 2023, Diabetes Care
  10. Louzada MLD, 2015, REV SAUDE PUBL, V49, DOI 10.1590/S0034-8910.2015049006132
  11. Desquilbet L, 2010, STAT MED, V29, P1037, DOI 10.1002/sim.3841
  12. Drehmer M, 2015, AM J CLIN NUTR, V101, P775, DOI 10.3945/ajcn.114.102152
  13. Duan MJ, 2022, BMC MED, V20, DOI 10.1186/s12916-021-02200-4
  14. Fardet A, 2016, FOOD FUNCT, V7, P2338, DOI [10.1039/C6FO00107F, 10.1039/c6fo00107f]
  15. Hosmer D., 2000, APPL LOGISTIC REGRES, P160, DOI [10.1002/0471722146.ch5, DOI 10.1002/0471722146.CH5]
  16. Hwang S, 2018, BMC ENDOCR DISORD, V18, DOI 10.1186/s12902-018-0310-y
  17. IBGE, 2020, Pesquisa de Orcamentos Familiares 2017-2018: analise de consumo alimentar pessoal no Brasil
  18. International Diabetes Federation, 2021, IDF diabetes atlas.
  19. Levy RB, 2021, CLIN NUTR, V40, P3608, DOI 10.1016/j.clnu.2020.12.018
  20. Llavero-Valero M, 2021, CLIN NUTR, V40, P2817, DOI 10.1016/j.clnu.2021.03.039
  21. Molina Maria del Carmen Bisi, 2013, Cad. Saúde Pública, V29, P379, DOI [10.1590/S0102-311X2013000600024, 10.1590/S0102-311X2013000200024]
  22. Monteiro CA, 2013, OBES REV, V14, P21, DOI 10.1111/obr.12107
  23. Monteiro CA, 2016, World Nutr, V7, P28, DOI 10.1186/1479-5868-9-43
  24. Monteiro CA, 2019, Ultra-processed foods, diet quality, and health using the NOVA classification system, P6
  25. Moodie R, 2013, LANCET, V381, P670, DOI 10.1016/S0140-6736(12)62089-3
  26. Moradi S, 2022, CRIT REV FOOD SCI, V63, P249, DOI 10.1080/10408398.2021.1946005
  27. Pagliai G, 2021, BRIT J NUTR, V125, P308, DOI 10.1017/S0007114520002688
  28. Pires RK, 2020, CIENC SAUDE COLETIVA, V25, P703, DOI 10.1590/1413-81232020252.12102018
  29. Qin P, 2020, EUR J EPIDEMIOL, V35, P655, DOI 10.1007/s10654-020-00655-y
  30. Rancière F, 2015, ENVIRON HEALTH-GLOB, V14, DOI 10.1186/s12940-015-0036-5
  31. Schmidt MI, 2015, INT J EPIDEMIOL, V44, P68, DOI 10.1093/ije/dyu027
  32. Schmidt MI, 2013, REV SAUDE PUBL, V47, P105, DOI 10.1590/S0034-8910.2013047003889
  33. Srour B, 2022, LANCET GASTROENTEROL, V7, P1128, DOI 10.1016/S2468-1253(22)00169-8
  34. Srour B, 2020, JAMA INTERN MED, V180, P283, DOI 10.1001/jamainternmed.2019.5942
  35. Suez J, 2022, CELL, V185, P3307, DOI 10.1016/j.cell.2022.07.016
  36. Yarmolinsky J, 2016, J NUTR, V146, P290, DOI 10.3945/jn.115.220194
  37. Zhang R, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182010788