Ictal SPECT in Psychogenic Nonepileptic and Epileptic Seizures

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
JOURNAL OF THE ACADEMY OF CONSULTATION-LIAISON PSYCHIATRY, v.62, n.1, p.29-37, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Psychogenic nonepileptic seizures (PNES) are a common and debilitating problem in patients with epilepsy. They can be virtually indistinguishable from epileptic seizures, demanding video-electroencaphalogram monitoring, which is costly and not widely available, for differential diagnosis. Specific functional brain correlates of PNES have not been demonstrated so far. We hypothesized that PNES and epileptic seizures have distinct brain activation patterns, assessed by functional neuroimaging during ictal events of both conditions. Objective: Compare ictal brain activation patterns of PNES and epileptic seizures using single-photon emission computerized tomography. Methods: We prospectively assessed brain functional activation using single-photon emission computerized tomography 99mTc-ethyl cysteinate dimer in 26 patients with PNES, confirmed by trained psychiatrists in epileptology, who had their seizures induced by provocative tests compared with 22 age- and sex-matched subjects with temporal lobe epilepsy who underwent prolonged intensive video-electroencaphalogram monitoring. Results: In PNES patients compared with temporal lobe epilepsy group, we found a consistent increase in regional cerebral blood flow in the right precuneus (Brodmann area 7; P = 0.003) and right posterior cingulate cortex (Brodmann area 31; P = 0.001), as well as a decrease in regional cerebral blood flow in the right amygdala (P = 0.027). Conclusions: Activation of default mode network brain areas and temporoparietal junction may be a distinct feature of ictal PNES and could be explained by a disruption between movement prediction input and sensory outcome. Such information mismatch might be the neurobiological underpinning of dissociative episodes.
Palavras-chave
PNES, SPECT, temporal lobe epilepsy, functional neurological disorder, conversion disorder
Referências
  1. Aybek S, 2020, J NEUROPSYCH CLIN N, V32, P79, DOI 10.1176/appi.neuropsych.19040083
  2. Benbadis SR, 2001, NEUROLOGY, V57, P915, DOI 10.1212/WNL.57.5.915
  3. Bolen RD, 2016, EPILEPSY BEHAV, V59, P73, DOI 10.1016/j.yebeh.2016.02.036
  4. Broyd SJ, 2009, NEUROSCI BIOBEHAV R, V33, P279, DOI 10.1016/j.neubiorev.2008.09.002
  5. Desmurget M, 2009, SCIENCE, V324, P811, DOI 10.1126/science.1169896
  6. Devinsky O, 2001, J NEUROPSYCH CLIN N, V13, P367, DOI 10.1176/appi.neuropsych.13.3.367
  7. Ettinger AB, 1998, J EPILEPSY, V11, P67, DOI 10.1016/S0896-6974(97)00112-6
  8. Fransson P, 2008, NEUROIMAGE, V42, P1178, DOI 10.1016/j.neuroimage.2008.05.059
  9. French J, 1993, NON SEIZ, P101
  10. GROND M, 1995, PSYCHIAT RES-NEUROIM, V61, P173, DOI 10.1016/0925-4927(95)02571-E
  11. Hitiris N, 2005, J NEUROL NEUROSUR PS, V76, P1316
  12. Kozlowska K, 2018, NEUROIMAGE-CLIN, V18, P730, DOI 10.1016/j.nicl.2018.02.003
  13. Laufs H, 2007, HUM BRAIN MAPP, V28, P1023, DOI 10.1002/hbm.20323
  14. Marchetti RL, 2008, SEIZURE-EUR J EPILEP, V17, P247, DOI 10.1016/j.seizure.2007.07.006
  15. Mars RB, 2012, FRONT HUM NEUROSCI, V6, DOI 10.3389/fnhum.2012.00189
  16. McKee K, 2018, PSYCHOSOMATICS, V59, P358, DOI 10.1016/j.psym.2017.12.006
  17. Mcsweeney M, 2017, NEUROIMAGE-CLIN, V16, P210, DOI 10.1016/j.nicl.2017.07.025
  18. Merskey H., 1995, ANAL HYSTERIA UNDERS, V2nd
  19. Nicholson TR, 2020, J NEUROPSYCH CLIN N, V32, P33, DOI 10.1176/appi.neuropsych.19060128
  20. Nowak DA, 2009, NEUROIMAGE, V47, P1015, DOI 10.1016/j.neuroimage.2009.04.082
  21. Perez DL, 2015, CLIN EEG NEUROSCI, V46, P4, DOI 10.1177/1550059414555905
  22. Pick S, 2019, J NEUROL NEUROSUR PS, V90, P704, DOI 10.1136/jnnp-2018-319201
  23. Popkirov S, 2015, SEIZURE-EUR J EPILEP, V31, P124, DOI 10.1016/j.seizure.2015.07.016
  24. Rainville P, 1999, J COGNITIVE NEUROSCI, V11, P110, DOI 10.1162/089892999563175
  25. Ramchuankiat S, 2017, P ANN INT IEEE EMBS, V2017, P1465
  26. Raz A, 2006, J PHYSIOL-PARIS, V99, P483, DOI 10.1016/j.jphysparis.2006.03.003
  27. van Beilen M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025918
  28. van der Kruijs SJM, 2014, J PSYCHIATR RES, V54, P126, DOI 10.1016/j.jpsychires.2014.03.010
  29. Varma AR, 1996, ACTA NEUROL SCAND, V94, P88, DOI 10.1111/j.1600-0404.1996.tb07035.x
  30. Voon V, 2010, NEUROLOGY, V74, P223, DOI 10.1212/WNL.0b013e3181ca00e9
  31. Voon V, 2010, BRAIN, V133, P1526, DOI 10.1093/brain/awq054
  32. Vuilleumier P, 2001, BRAIN, V124, P1077, DOI 10.1093/brain/124.6.1077
  33. Ward N S, 2003, Cogn Neuropsychiatry, V8, P295, DOI 10.1080/13546800344000200