Role of galectin-3 in the elastic response of radial growth phase melanoma cancer cells

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
HERRERA-REINOZA, Nataly
TEIXEIRA, Fernanda de Sa
SALVADORI, Maria Cecilia
Citação
MICROSCOPY RESEARCH AND TECHNIQUE, v.86, n.10, p.1353-1362, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells.
Palavras-chave
atomic force microscopy, cell mechanics, elasticity modulus, galectin-3, keratinocytes, melanoma
Referências
  1. Bobrowska J, 2019, ANAL CHEM, V91, P9885, DOI 10.1021/acs.analchem.9b01542
  2. Bobrowska J, 2016, ANAL BIOCHEM, V511, P52, DOI 10.1016/j.ab.2016.06.011
  3. Brown ER, 2012, EUR J CANCER, V48, P865, DOI 10.1016/j.ejca.2011.09.003
  4. Bustos Silvina Odete, 2018, Oncotarget, V9, P14567, DOI 10.18632/oncotarget.24516
  5. Chiou YW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077384
  6. Ciasca G, 2015, NANOSCALE, V7, P17030, DOI 10.1039/c5nr03145a
  7. CLARK WH, 1984, HUM PATHOL, V15, P1147, DOI 10.1016/S0046-8177(84)80310-X
  8. Dao M, 2003, J MECH PHYS SOLIDS, V51, P2259, DOI 10.1016/j.jmps.2003.09.019
  9. Davis LE, 2019, CANCER BIOL THER, V20, P1366, DOI 10.1080/15384047.2019.1640032
  10. Du GS, 2011, BIOMED MICRODEVICES, V13, P29, DOI 10.1007/s10544-010-9468-4
  11. Cardoso ACF, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00127
  12. Gostek J, 2015, EUR BIOPHYS J BIOPHY, V44, P49, DOI 10.1007/s00249-014-1000-y
  13. Guz N, 2014, BIOPHYS J, V107, P564, DOI 10.1016/j.bpj.2014.06.033
  14. HERLYN M, 1985, CANCER RES, V45, P5670
  15. Hermanowicz P, 2014, REV SCI INSTRUM, V85, DOI 10.1063/1.4881683
  16. Hinterdorfer P, 2006, NAT METHODS, V3, P347, DOI 10.1038/NMETH871
  17. Hochmuth RM, 2000, J BIOMECH, V33, P15, DOI 10.1016/S0021-9290(99)00175-X
  18. HUTTER JL, 1993, REV SCI INSTRUM, V64, P1868, DOI 10.1063/1.1143970
  19. Jinka Rajeswari, 2012, Int J Cell Biol, V2012, P219196, DOI 10.1155/2012/219196
  20. Katira P, 2013, FRONT ONCOL, V3, DOI 10.3389/fonc.2013.00145
  21. Kim TH, 2016, J CELL SCI, V129, P4563, DOI 10.1242/jcs.194803
  22. Krieg M, 2019, NAT REV PHYS, V1, P41, DOI 10.1038/s42254-018-0001-7
  23. Lagana A, 2006, MOL CELL BIOL, V26, P3181, DOI 10.1128/MCB.26.8.3181-3193.2006
  24. Laurent VM, 2002, J BIOMECH ENG-T ASME, V124, P408, DOI 10.1115/1.1485285
  25. Lekka M, 1999, EUR BIOPHYS J BIOPHY, V28, P312, DOI 10.1007/s002490050213
  26. Lekka M, 2017, CELLULAR ANALYSIS BY ATOMIC FORCE MICROSCOPY, P1, DOI 10.1201/9781315364803
  27. Lekka M, 2012, ARCH BIOCHEM BIOPHYS, V518, P151, DOI 10.1016/j.abb.2011.12.013
  28. Li QS, 2008, BIOCHEM BIOPH RES CO, V374, P609, DOI 10.1016/j.bbrc.2008.07.078
  29. Li Zhong-wu, 2013, Zhonghua Bing Li Xue Za Zhi, V42, P801
  30. Liu D, 2021, NAT MED, V27, P985, DOI 10.1038/s41591-021-01331-8
  31. Luo H, 2017, J AM SOC HYPERTENS, V11, P673, DOI 10.1016/j.jash.2017.07.009
  32. Matzke R, 2001, NAT CELL BIOL, V3, P607, DOI 10.1038/35078583
  33. Melo FHM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029313
  34. Mierke CT, 2014, REP PROG PHYS, V77, DOI 10.1088/0034-4885/77/7/076602
  35. Nguyen HL, 2022, PHYS CHEM CHEM PHYS, V24, P6225, DOI 10.1039/d1cp04836h
  36. Oliveira FL, 2007, J LEUKOCYTE BIOL, V82, P300, DOI 10.1189/jlb.1206747
  37. Pogoda K, 2012, EUR BIOPHYS J BIOPHY, V41, P79, DOI 10.1007/s00249-011-0761-9
  38. RAO KMK, 1991, MUTAT RES, V256, P139, DOI 10.1016/0921-8734(91)90007-X
  39. Ren KL, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.663021
  40. Rosenbluth MJ, 2006, BIOPHYS J, V90, P2994, DOI 10.1529/biophysj.105.067496
  41. Rotsch C, 2000, BIOPHYS J, V78, P520, DOI 10.1016/S0006-3495(00)76614-8
  42. Ruvolo PP, 2016, BBA-MOL CELL RES, V1863, P427, DOI 10.1016/j.bbamcr.2015.08.008
  43. Salvadori MC, 2010, DIAM RELAT MATER, V19, P324, DOI 10.1016/j.diamond.2010.01.002
  44. Seo Y, 2008, REP PROG PHYS, V71, DOI 10.1088/0034-4885/71/1/016101
  45. Sneddon IN, 1965, INT J ENG SCI, V3, P47, DOI 10.1016/0020-7225(65)90019-4
  46. Sobiepanek A, 2017, BIOSENS BIOELECTRON, V93, P274, DOI 10.1016/j.bios.2016.08.088
  47. Solon J, 2007, BIOPHYS J, V93, P4453, DOI 10.1529/biophysj.106.101386
  48. Soo JK, 2011, PIGM CELL MELANOMA R, V24, P490, DOI 10.1111/j.1755-148X.2011.00850.x
  49. Suresh S, 2007, ACTA BIOMATER, V3, P413, DOI 10.1016/j.actbio.2007.04.002
  50. Takemoto Yoshio, 2016, JACC Basic Transl Sci, V1, P143
  51. Tanase M, 2007, METHOD CELL BIOL, V83, P473, DOI 10.1016/S0091-679X(07)83020-2
  52. Thijssen VL, 2015, BBA-REV CANCER, V1855, P235, DOI 10.1016/j.bbcan.2015.03.003
  53. Vijayakumar S, 2013, AM J PHYSIOL-RENAL, V305, pF90, DOI 10.1152/ajprenal.00498.2012
  54. Voss RK, 2015, PATIENT-RELAT OUTCOM, V6, P229, DOI 10.2147/PROM.S69351
  55. Weinstein David, 2014, J Clin Aesthet Dermatol, V7, P13
  56. Xu WW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046609
  57. Yang Y, 2019, MICROSC RES TECHNIQ, V82, P1843, DOI 10.1002/jemt.23351
  58. Zbiral Barbara, 2022, Methods Mol Biol, V2471, P323, DOI 10.1007/978-1-0716-2193-6_19
  59. Zemla J, 2018, SEMIN CELL DEV BIOL, V73, P115, DOI 10.1016/j.semcdb.2017.06.029
  60. Zhao XQ, 2015, NANOSCALE RES LETT, V10, P1, DOI 10.1186/s11671-015-1174-y