Detection of germline variants in Brazilian breast cancer patients using multigene panel testing

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
VIANA, Danilo Vilela
KITAJIMA, Joao Paulo Fumio Whitaker
ZHENG, Yonglan
FREITAS, Erika
MONTEIRO, Fabiola Paoli Mendes
VALIM, Andre
SCHLESINGER, David
Citação
SCIENTIFIC REPORTS, v.12, n.1, article ID 4190, 12p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Genetic diversity of germline variants in breast cancer (BC) predisposition genes is unexplored in miscegenated populations, such those living in Latin America. We evaluated 1663 Brazilian BC patients, who underwent hereditary multigene panel testing (20-38 cancer susceptibility genes), to determine the spectrum and prevalence of pathogenic/likely pathogenic (P/LP) variants and variants of uncertain significance (VUS). Associations between P/LP variants and BC risk were estimated in a case-control analysis of BC patients and 18,919 Brazilian reference controls (RC). In total, 335 (20.1%) participants carried germline P/LP variants: 167 (10.0%) in BRCA1/2, 122 (7.3%) in BC actionable non-BRCA genes and 47 (2.8%) in candidate genes or other cancer predisposition genes. Overall, 354 distinctive P/LP variants were identified in 23 genes. The most commonly mutated genes were: BRCA1 (27.4%), BRCA2 (20.3%), TP53 (10.5%), monoallelic MUTYH (9.9%), ATM (8.8%), CHEK2 (6.2%) and PALB2 (5.1%). The Brazilian variant TP53 R337H (c.1010G>A, p.Arg337His), detected in 1.6% of BC patients and 0.1% of RC, was strongly associated with risk of BC, OR = 17.4 (95% CI: 9.4-32.1; p < 0.0001); monoallelic MUTYH variants c.1187G>A and c.536A>G, detected in 1.2% (0.9% RC) and 0.8% (0.4% RC) of the patients, respectively, were not associated with the odds of BC, the former with OR = 1.4 (95% CI: 0.8-2.4; p = 0.29) and the latter with OR = 1.9 (95% CI: 0.9-3.9; p = 0.09). The overall VUS rate was 46.1% for the entire patient population. Concluding, the use of multigene panel testing almost doubled the identification of germline P/LP variants in clinically actionable predisposition genes in BC patients. In Brazil, special attention should be given to TP53 P/LP variants.
Palavras-chave
Referências
  1. Achatz MI, 2020, JCO GLOB ONCOL, V6, P439, DOI 10.1200/JGO.19.00170
  2. Adams S, 2019, ANN ONCOL, V30, P397, DOI 10.1093/annonc/mdy517
  3. Alemar B, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187630
  4. Alenezi WM, 2020, GENES-BASEL, V11, DOI 10.3390/genes11080856
  5. Assumpcao JG, 2008, BMC CANCER, V8, DOI 10.1186/1471-2407-8-357
  6. Balmana J, 2011, ANN ONCOL, V22, pvi31, DOI 10.1093/annonc/mdr373
  7. Bandeira G, 2021, BREAST CANCER-TOKYO, V28, P346, DOI 10.1007/s12282-020-01165-1
  8. Brandao A, 2020, CANCERS, V12, DOI 10.3390/cancers12113254
  9. Carraro DM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057581
  10. Cipriano NM, 2019, BREAST CANCER-TOKYO, V26, P397, DOI 10.1007/s12282-018-00938-z
  11. Cury NM, 2014, HERED CANCER CLIN PR, V12, DOI 10.1186/1897-4287-12-8
  12. Custodio G, 2013, J CLIN ONCOL, V31, P2619, DOI 10.1200/JCO.2012.46.3711
  13. Cybulski C, 2015, CLIN GENET, V88, P366, DOI 10.1111/cge.12524
  14. Carvalho SDES, 2020, BMC MED GENOMICS, V13, DOI 10.1186/s12920-019-0652-y
  15. de Andrade KC, 2019, HUM MUTAT, V40, P97, DOI 10.1002/humu.23673
  16. de Souza AM, 2019, GENET MOL BIOL, V42, P495, DOI [10.1590/1678-4685-GMB-2018-0076, 10.1590/1678-4685-gmb-2018-0076]
  17. Timoteo ARD, 2018, BREAST CANCER RES TR, V172, P637, DOI 10.1007/s10549-018-4938-0
  18. Desmond A, 2015, JAMA ONCOL, V1, P943, DOI 10.1001/jamaoncol.2015.2690
  19. Dorling L, 2021, NEW ENGL J MED, V384, P428, DOI 10.1056/NEJMoa1913948
  20. Dufloth Rozany Mucha, 2005, Sao Paulo Med. J., V123, P192, DOI 10.1590/S1516-31802005000400007
  21. Dutil J, 2015, BREAST CANCER RES TR, V154, P441, DOI 10.1007/s10549-015-3629-3
  22. Easton DF, 2015, NEW ENGL J MED, V372, P2243, DOI 10.1056/NEJMsr1501341
  23. Encinas Giselly, 2018, Oncotarget, V9, P22460, DOI 10.18632/oncotarget.25123
  24. Esteves VF, 2009, BRAZ J MED BIOL RES, V42, P453, DOI 10.1590/S0100-879X2009000500009
  25. Ewald IP, 2011, HERED CANCER CLIN PR, V9, DOI 10.1186/1897-4287-9-12
  26. Felix Gabriela Es, 2014, Hum Genome Var, V1, P14012, DOI 10.1038/hgv.2014.12
  27. Fernandes GC, 2016, ONCOTARGET, V7, P80465, DOI 10.18632/oncotarget.12610
  28. Fonfria M, 2021, J PERS MED, V11, DOI 10.3390/jpm11060548
  29. Giacomazzi J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099893
  30. Gomes MCB, 2007, BREAST CANCER RES TR, V103, P349, DOI 10.1007/s10549-006-9378-6
  31. Gomes MCB, 2012, HERED CANCER CLIN PR, V10, DOI 10.1186/1897-4287-10-3
  32. Gomes R, 2021, BREAST CANCER RES TR, V185, P851, DOI 10.1007/s10549-020-05985-9
  33. Kratz CP, 2017, CLIN CANCER RES, V23, pE38, DOI 10.1158/1078-0432.CCR-17-0408
  34. Kurian AW, 2017, JCO PRECIS ONCOL, V1, DOI 10.1200/PO.16.00066
  35. Kurian AW, 2018, JAMA ONCOL, V4, P1066, DOI 10.1001/jamaoncol.2018.0644
  36. Kurian AW, 2015, JAMA ONCOL, V1, P277, DOI 10.1001/jamaoncol.2015.28
  37. Kurian AW, 2014, J CLIN ONCOL, V32, P2001, DOI 10.1200/JCO.2013.53.6607
  38. LaDuca H, 2014, GENET MED, V16, P830, DOI 10.1038/gim.2014.40
  39. Le Calvez-Kelm F, 2011, BREAST CANCER RES, V13, DOI 10.1186/bcr2810
  40. Lourenco JJ, 2004, GENET MOL BIOL, V27, P500, DOI 10.1590/S1415-47572004000400006
  41. Maxwell KN, 2015, GENET MED, V17, P630, DOI 10.1038/gim.2014.176
  42. Michailidou K, 2013, NAT GENET, V45, P353, DOI 10.1038/ng.2563
  43. Mighton C, 2021, GENET MED, V23, P22, DOI 10.1038/s41436-020-00957-2
  44. Ministerio da Saude. Instituto Nacional do Cancer Jose de Alencar Gomes da Silva (INCA), 2019, EST 2020 INC CANC BR
  45. Nagy TR, 2021, CLINICS, V76, DOI 10.6061/clinics/2021/e2837
  46. National Comprehensive Cancer Network, 2021, NCCN CLIN PRACTICE G, V1, P2022
  47. Nielsen FC, 2016, NAT REV CANCER, V16, P599, DOI 10.1038/nrc.2016.72
  48. Palmer-Young EC, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20369-2
  49. Palmero EI, 2016, GENET MOL BIOL, V39, P210, DOI 10.1590/1678-4685-GMB-2014-0363
  50. Palmero EI, 2008, CANCER LETT, V261, P21, DOI 10.1016/j.canlet.2007.10.044
  51. Pinto EM, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aba3231
  52. Rebbeck TR, 2018, HUM MUTAT, V39, P593, DOI 10.1002/humu.23406
  53. Rivandi M, 2018, FRONT GENET, V9, DOI 10.3389/fgene.2018.00280
  54. Rofes P, 2021, GENES-BASEL, V12, DOI 10.3390/genes12020150
  55. Sandoval RL, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0247363
  56. Silva FC, 2014, BMC MED GENET, V15, DOI 10.1186/1471-2350-15-55
  57. Southey MC, 2016, J MED GENET, V53, P800, DOI 10.1136/jmedgenet-2016-103839
  58. Thompson ER, 2016, J CLIN ONCOL, V34, P1455, DOI 10.1200/JCO.2015.63.7454
  59. Tung N, 2016, J CLIN ONCOL, V34, P1460, DOI 10.1200/JCO.2015.65.0747
  60. Tung N, 2015, CANCER-AM CANCER SOC, V121, P25, DOI 10.1002/cncr.29010
  61. Achatz MIW, 2009, LANCET ONCOL, V10, P920, DOI 10.1016/S1470-2045(09)70089-0
  62. Win AK, 2014, GASTROENTEROLOGY, V146, P1208, DOI 10.1053/j.gastro.2014.01.022