TOP1 modulation during melanoma progression and in adaptative resistance to BRAF and MEK inhibitors

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Autores
OLIVEIRA, Erica Aparecida de
CHAUHAN, Jagat
SILVA, Julia Rezende da
CARVALHO, Larissa Anastacio da Costa
DIAS, Diogo
CARVALHO, Danielle Goncalves de
WATANABE, Luis Roberto Masao
REBECCA, Vito W.
MILLS, Gordon
LU, Yiling
Citação
PHARMACOLOGICAL RESEARCH, v.173, article ID 105911, 11p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In melanomas, therapy resistance can arise due to a combination of genetic, epigenetic and phenotypic mechanisms. Due to its crucial role in DNA supercoil relaxation, TOP1 is often considered an essential chemotherapeutic target in cancer. However, how TOP1 expression and activity might differ in therapy sensitive versus resistant cell types is unknown. Here we show that TOP1 expression is increased in metastatic melanoma and correlates with an invasive gene expression signature. More specifically, TOP1 expression is highest in cells with the lowest expression of MITF, a key regulator of melanoma biology. Notably, TOP1 and DNA Single-Strand Break Repair genes are downregulated in BRAFi- and BRAFi/MEKi-resistant cells and TOP1 inhibition decreases invasion markers only in BRAFi/MEKi-resistant cells. Thus, we show three different phenotypes related to TOP1 levels: i) non-malignant cells with low TOP1 levels; ii) metastatic cells with high TOP1 levels and high invasiveness; and iii) BRAFi- and BRAFi/MEKi-resistant cells with low TOP1 levels and high invasiveness. Together, these results highlight the potential role of TOP1 in melanoma progression and resistance.
Palavras-chave
Melanoma, TOP1, Resistance, Topotecan, MITF
Referências
  1. Alves-Fernandes DK, 2019, PHARMACOL RES, V141, P63, DOI 10.1016/j.phrs.2018.12.006
  2. Anaya J, 2016, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.67
  3. Brohem CA, 2012, PIGM CELL MELANOMA R, V25, P354, DOI 10.1111/j.1755-148X.2012.00992.x
  4. Broman KK, 2019, EXPERT OPIN DRUG SAF, V18, P381, DOI 10.1080/14740338.2019.1607289
  5. Broustas CG, 2014, RADIAT RES, V181, P111, DOI 10.1667/RR13515.1
  6. Caldecott KW, 2008, NAT REV GENET, V9, P619, DOI 10.1038/nrg2380
  7. Champoux JJ, 2000, METH MOL B, V95, P81
  8. Ciccia A, 2010, MOL CELL, V40, P179, DOI 10.1016/j.molcel.2010.09.019
  9. Davies H, 2002, NATURE, V417, P949, DOI 10.1038/nature00766
  10. de Oliveira EA, 2017, PHARMACOL RES, V125, P178, DOI 10.1016/j.phrs.2017.08.018
  11. de Souza N, 2020, ANTI-CANCER AGENT ME, V20, P1038, DOI 10.2174/1871520620666200218111422
  12. Emery CM, 2009, P NATL ACAD SCI USA, V106, P20411, DOI 10.1073/pnas.0905833106
  13. Faiao-Flores F, 2017, ONCOGENE, V36, P1849, DOI 10.1038/onc.2016.348
  14. Flaherty KT, 2012, NEW ENGL J MED, V367, P1694, DOI 10.1056/NEJMoa1210093
  15. Flaherty KT, 2012, NAT REV CANCER, V12, P349, DOI 10.1038/nrc3218
  16. Flaherty KT, 2010, NEW ENGL J MED, V363, P809, DOI 10.1056/NEJMoa1002011
  17. Gaggioli C, 2007, PIGM CELL RES, V20, P161, DOI 10.1111/j.1600-0749.2007.00378.x
  18. Garraway LA, 2005, NATURE, V436, P117, DOI 10.1038/nature03664
  19. Gelfo V, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21176009
  20. Goding CR, 2019, GENE DEV, V33, P983, DOI 10.1101/gad.324657.119
  21. Hartman ML, 2015, CELL MOL LIFE SCI, V72, P1249, DOI 10.1007/s00018-014-1791-0
  22. Hofmann UB, 2000, J INVEST DERMATOL, V115, P337, DOI 10.1046/j.1523-1747.2000.00068.x
  23. Jain RK, 2015, CELL CYCLE, V14, P3434, DOI 10.1080/15384101.2015.1090065
  24. Johannessen CM, 2013, NATURE, V504, P138, DOI 10.1038/nature12688
  25. Johnson DB, 2014, J CLIN ONCOL, V32, P3697, DOI 10.1200/JCO.2014.57.3535
  26. Khoronenkova SV, 2015, P NATL ACAD SCI USA, V112, P3997, DOI 10.1073/pnas.1416031112
  27. Kollmannsberger C, 1999, ONCOLOGY-BASEL, V56, P1, DOI 10.1159/000011923
  28. Konieczkowski DJ, 2014, CANCER DISCOV, V4, P816, DOI 10.1158/2159-8290.CD-13-0424
  29. Li FZ, 2017, AM J CANCER RES, V7, P2350
  30. Lister JA, 2014, J INVEST DERMATOL, V134, P133, DOI 10.1038/jid.2013.293
  31. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  32. Lynch BJ, 1998, HUM PATHOL, V29, P1240, DOI 10.1016/S0046-8177(98)90251-9
  33. Ma YF, 2017, ADV CLIN EXP MED, V26, P421, DOI 10.17219/acem/62120
  34. Masjedi A, 2018, BIOMED PHARMACOTHER, V108, P1415, DOI 10.1016/j.biopha.2018.09.177
  35. MEADETOLLIN LC, 1990, CANCER LETT, V53, P45, DOI 10.1016/0304-3835(90)90009-M
  36. Mei C, 2020, BIOMED PHARMACOTHER, V125, DOI 10.1016/j.biopha.2020.109875
  37. Menzies AM, 2012, CLIN CANCER RES, V18, P3242, DOI 10.1158/1078-0432.CCR-12-0052
  38. Muller J, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6712
  39. Nitiss JL, 2001, J BIOL CHEM, V276, P26708, DOI 10.1074/jbc.M102674200
  40. Ohneseit PA, 2005, RADIOTHER ONCOL, V75, P237, DOI 10.1016/j.radonc.2005.03.025
  41. Paraiso KHT, 2013, BIOCHEM PHARMACOL, V85, P1033, DOI 10.1016/j.bcp.2013.01.018
  42. Penna I, 2016, ONCOTARGET, V7, P3947, DOI 10.18632/oncotarget.6600
  43. Pennacchi PC, 2015, TISSUE ENG PT A, V21, P2417, DOI [10.1089/ten.tea.2015.0009, 10.1089/ten.TEA.2015.0009]
  44. Pommier Y, 2006, NAT REV CANCER, V6, P789, DOI 10.1038/nrc1977
  45. Pouliot JJ, 2001, GENES CELLS, V6, P677, DOI 10.1046/j.1365-2443.2001.00452.x
  46. Puzanov I, 2011, MOL ONCOL, V5, P116, DOI 10.1016/j.molonc.2011.01.005
  47. Rambow F, 2019, GENE DEV, V33, P1295, DOI 10.1101/gad.329771.119
  48. Rambow F, 2018, CELL, V174, P843, DOI 10.1016/j.cell.2018.06.025
  49. Rebecca VW, 2017, CANCER DISCOV, V7, P1266, DOI 10.1158/2159-8290.CD-17-0741
  50. Ribas A, 2011, NAT REV CLIN ONCOL, V8, P426, DOI 10.1038/nrclinonc.2011.69
  51. Riesenberg S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9755
  52. Ryan D, 2010, PIGM CELL MELANOMA R, V23, P542, DOI 10.1111/j.1755-148X.2010.00720.x
  53. Sanchez-Hernandez I, 2012, CANCER LETT, V314, P244, DOI 10.1016/j.canlet.2011.09.037
  54. Sandri S, 2016, PHARMACOL RES, V111, P523, DOI 10.1016/j.phrs.2016.07.017
  55. Shaffer SM, 2017, NATURE, V546, P431, DOI 10.1038/nature22794
  56. Shimizu T, 2012, CLIN CANCER RES, V18, P2316, DOI 10.1158/1078-0432.CCR-11-2381
  57. Solit DB, 2011, NEW ENGL J MED, V364, P772, DOI 10.1056/NEJMcibr1013704
  58. Straussman R, 2012, NATURE, V487, P500, DOI 10.1038/nature11183
  59. Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003
  60. Thomas A, 2019, CLIN CANCER RES, V25, P6581, DOI 10.1158/1078-0432.CCR-19-1089
  61. Thul PJ, 2018, PROTEIN SCI, V27, P233, DOI 10.1002/pro.3307
  62. Tiago M, 2014, TISSUE ENG PT A, V20, P2412, DOI [10.1089/ten.TEA.2013.0473, 10.1089/ten.tea.2013.0473]
  63. Tirosh I, 2016, SCIENCE, V352, P189, DOI 10.1126/science.aad0501
  64. Trunzer K, 2013, J CLIN ONCOL, V31, P1767, DOI 10.1200/JCO.2012.44.7888
  65. Tsoi J, 2018, CANCER CELL, V33, P890, DOI 10.1016/j.ccell.2018.03.017
  66. Verfaillie A, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7683
  67. Wang JC, 2002, NAT REV MOL CELL BIO, V3, P430, DOI 10.1038/nrm831
  68. Xu Y, 2015, BIOMOLECULES, V5, P1652, DOI 10.3390/biom5031652
  69. Yu QL, 2019, CANCER MED-US, V8, P5414, DOI 10.1002/cam4.2248
  70. Zhang G, 2016, J CLIN INVEST, V126, P1834, DOI 10.1172/JCI82661
  71. Zhang TW, 2016, PIGM CELL MELANOMA R, V29, P266, DOI 10.1111/pcmr.12459