Surgical approaches for the lateral mesencephalic sulcus

Nenhuma Miniatura disponível
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER ASSOC NEUROLOGICAL SURGEONS
Citação
JOURNAL OF NEUROSURGERY, v.132, n.5, p.1653-1658, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVE The brainstem is a compact, delicate structure. The surgeon must have good anatomical knowledge of the safe entry points to safely resect intrinsic lesions. Lesions located at the lateral midbrain surface are better approached through the lateral mesencephalic sulcus (LMS). The goal of this study was to compare the surgical exposure to the LMS provided by the subtemporal (ST) approach and the paramedian and extreme-lateral variants of the supracerebellar infratentorial (SCIT) approach. METHODS These 3 approaches were used in 10 cadaveric heads. The authors performed measurements of predetermined points by using a neuronavigation system. Areas of microsurgical exposure and angles of the approaches were determined. Statistical analysis was performed to identify significant differences in the respective exposures. RESULTS The surgical exposure was similar for the different approaches-369.8 +/- 70.1 mm(2) for the ST; 341.2 +/- 71.2 mm(2) for the SCIT paramedian variant; and 312.0 +/- 79.3 mm(2) for the SCIT extreme- lateral variant (p = 0.13). However, the vertical angular exposure was 16.3 degrees +/- 3.6 degrees for the ST, 19.4 degrees +/- 3.4 degrees for the SCIT paramedian variant, and 25.1 degrees +/- 3.3 degrees for the SCIT extreme- lateral variant craniotomy (p < 0.001). The horizontal angular exposure was 45.2 degrees +/- 6.3 degrees for the ST, 35.6 degrees +/- 2.9 degrees for the SCIT paramedian variant, and 45.5 degrees +/- 6.6 degrees for the SCIT extreme-lateral variant opening, presenting no difference between the ST and extreme-lateral variant (p = 0.92), but both were superior to the paramedian variant (p < 0.001). Data are expressed as the mean +/- SD. CONCLUSIONS The extreme-lateral SCIT approach had the smaller area of surgical exposure; however, these differences were not statistically significant. The extreme-lateral SCIT approach presented a wider vertical and horizontal angle to the LMS compared to the other craniotomies. Also, it provides a 90 degrees trajectory to the sulcus that facilitates the intraoperative microsurgical technique.
Palavras-chave
brainstem surgery, lateral mesencephalic sulcus, surgical approaches, safe entry zones, supracerebellar infratentorial approach, subtemporal craniotomy, anatomy
Referências
  1. Abla AA, 2011, NEUROSURGERY, V68, P403, DOI 10.1227/NEU.0b013e3181ff9cde
  2. Bailey P, 1939, INTRACRANIAL TUMORS
  3. Bricolo A, 1991, Acta Neurochir Suppl (Wien), V53, P148
  4. Bricolo A, 1995, Adv Tech Stand Neurosurg, V22, P261
  5. Bricolo A, 2009, PRACTICAL HDB NEUROS, P349
  6. Brown AP, 1996, BNI Q, V12, P20
  7. Cavalcanti DD, 2016, J NEUROSURG, V124, P1359, DOI 10.3171/2015.4.JNS141945
  8. Cavalcanti DD, 2010, NEUROSURGERY, V66, pONS205, DOI 10.1227/01.NEU.0000369948.37233.70
  9. Deshmukh VR, 2006, NEUROSURGERY, V58, P202, DOI 10.1227/01.NEU.0000207373.26614.BF
  10. EPSTEIN F, 1986, J NEUROSURG, V64, P11, DOI 10.3171/jns.1986.64.1.0011
  11. Ferroli P, 2005, NEUROSURGERY, V56, P1203, DOI 10.1227/01.NEU.0000159644.04757.45
  12. Figueiredo EG, 2007, NEUROSURGERY, V61, P256, DOI 10.1227/01.neu.0000303978.11752.45
  13. Figueiredo EG, 2012, J CLIN NEUROSCI, V19, P1545, DOI 10.1016/j.jocn.2012.01.032
  14. Figueiredo EG, 2008, NEUROSURGERY, V62, P1361, DOI [10.1227/01.NEU.0000233691.23208.9C, 10.1227/01.neu.0000333801.51962.2f]
  15. Figueiredo EG, 2006, J NEUROSURG, V104, P957, DOI 10.3171/jns.2006.104.6.957
  16. Figueiredo Eberval Gadelha, 2005, Neurosurgery, V56, P397, DOI 10.1227/01.NEU.0000156549.96185.6D
  17. Figueiredo EG, 2016, WORLD NEUROSURG, V87, P584, DOI 10.1016/j.wneu.2015.10.063
  18. Figueiredo EG, 2015, WORLD NEUROSURG, V84, P1907, DOI 10.1016/j.wneu.2015.08.031
  19. Figueiredo EG, 2000, NEUROSURGERY S2, V59, P212
  20. Figueiredo EG, 2006, NEUROSURGERY S, V58, pONS13
  21. Gonzalez LF, 2002, NEUROSURGERY, V50, P550, DOI 10.1097/00006123-200203000-00023
  22. Howell C M, 1910, Proc R Soc Med, V3, P65
  23. Januszewski J, 2016, WORLD NEUROSURG, V93, P377, DOI 10.1016/j.wneu.2016.06.019
  24. Kalani MYS, 2016, J NEUROSURG, V125, P1596, DOI 10.3171/2016.6.JNS161043
  25. KONOVALOV AN, 1990, J NEUROSURG, V73, P181, DOI 10.3171/jns.1990.73.2.0181
  26. LASSITER KR, 1971, J NEUROSURG, V34, P719, DOI 10.3171/jns.1971.34.6.0719
  27. Meola A, 2016, NEUROSURGERY, V79, P437, DOI 10.1227/NEU.0000000000001224
  28. Porter RW, 1999, J NEUROSURG, V90, P50, DOI 10.3171/jns.1999.90.1.0050
  29. Recalde RJ, 2008, NEUROSURGERY, V63, P9, DOI [10.1227/01.NEU.0000297062.52433.3F, 10.1227/01.neu.0000317368.69523.40]
  30. Safavi-Abbasi S, 2010, NEUROSURGERY, V66, P54, DOI 10.1227/01.NEU.0000354366.48105.FE
  31. Sekhar LN, 2014, WORLD NEUROSURG, V82, DOI 10.1016/j.wneu.2013.07.104
  32. Siwanuwatn R, 2006, J NEUROSURG, V104, P137, DOI 10.3171/jns.2006.104.1.137
  33. STEIN BM, 1971, J NEUROSURG, V35, P197, DOI 10.3171/jns.1971.35.2.0197
  34. VANDENBERGH R, 1990, CLIN NEUROL NEUROSUR, V92, P311, DOI 10.1016/0303-8467(90)90056-B
  35. Vishteh AG, 2000, NEUROSURGERY, V46, P384, DOI 10.1097/00006123-200002000-00022
  36. Araujo JLV, 2017, J NEUROSURG, V127, P209, DOI 10.3171/2016.8.JNS16403
  37. VOIGT K, 1976, NEUROCHIRURGIA, V19, P59
  38. Wen D Y, 1993, Neurosurg Clin N Am, V4, P457
  39. Yasargil MG, 1984, MICRONEUROSURGERY