Deviations from a typical development of the cerebellum in youth are associated with psychopathology, executive functions and educational outcomes

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
CAMBRIDGE UNIV PRESS
Autores
BORGES, Marina S.
HOFFMANN, Mauricio S.
SIMIONI, Andre
AXELRUD, Luiza K.
TEIXEIRA, Danielle S.
ZUGMAN, Andre
JACKOWSKI, Andrea
PAN, Pedro M.
BRESSAN, Rodrigo A.
PARKER, Nadine
Citação
PSYCHOLOGICAL MEDICINE, v.53, n.12, p.5698-5708, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Understanding deviations from typical brain development is a promising approach to comprehend pathophysiology in childhood and adolescence. We investigated if cerebellar volumes different than expected for age and sex could predict psychopathology, executive functions and academic achievement. Methods Children and adolescents aged 6-17 years from the Brazilian High-Risk Cohort Study for Mental Conditions had their cerebellar volume estimated using Multiple Automatically Generated Templates from T1-weighted images at baseline (n = 677) and at 3-year follow-up (n = 447). Outcomes were assessed using the Child Behavior Checklist and standardized measures of executive functions and school achievement. Models of typically developing cerebellum were based on a subsample not exposed to risk factors and without mental-health conditions (n = 216). Deviations from this model were constructed for the remaining individuals (n = 461) and standardized variation from age and sex trajectory model was used to predict outcomes in cross-sectional, longitudinal and mediation analyses. Results Cerebellar volumes higher than expected for age and sex were associated with lower externalizing specific factor and higher executive functions. In a longitudinal analysis, deviations from typical development at baseline predicted inhibitory control at follow-up, and cerebellar deviation changes from baseline to follow-up predicted changes in reading and writing abilities. The association between deviations in cerebellar volume and academic achievement was mediated by inhibitory control. Conclusions Deviations in the cerebellar typical development are associated with outcomes in youth that have long-lasting consequences. This study highlights both the potential of typical developing models and the important role of the cerebellum in mental health, cognition and education.
Palavras-chave
MRI, cerebellum, neurodevelopment, psychopathology, executive functions, educational outcomes, reading, writing
Referências
  1. Achenbach T. M., 2001, Manual for ASEBA School-Age Forms Profiles, DOI 10.1371/JOURNAL.PONE.0116407
  2. Amorim Patricia, 2000, Revista Brasileira de Psiquiatria, V22, P106
  3. AssociacAo Brasiliera de Empresas de Pesquisa (ABEP), 2010, CRIT CLASS EC BRAS
  4. Biederman J, 2004, J CONSULT CLIN PSYCH, V72, P757, DOI 10.1037/0022-006X.72.5.757
  5. Bitsakou P, 2008, J NEURAL TRANSM, V115, P261, DOI 10.1007/s00702-007-0828-z
  6. Boller B, 2017, BRAIN IMAGING BEHAV, V11, P304, DOI 10.1007/s11682-016-9621-7
  7. Buckner RL, 2004, NEUROIMAGE, V23, P724, DOI 10.1016/j.neuroimage.2004.06.018
  8. Caspi A, 2014, CLIN PSYCHOL SCI, V2, P119, DOI 10.1177/2167702613497473
  9. Castellanos FX, 2002, JAMA-J AM MED ASSOC, V288, P1740, DOI 10.1001/jama.288.14.1740
  10. Chakravarty MM, 2013, HUM BRAIN MAPP, V34, P2635, DOI 10.1002/hbm.22092
  11. Ding H, 2012, NEUROSCI LETT, V508, P47, DOI 10.1016/j.neulet.2011.12.016
  12. Fleitlich-Bilyk B, 2004, J AM ACAD CHILD PSY, V43, P727, DOI 10.1097/01.chi.0000120021.14101.ca
  13. Goodman R, 2000, J CHILD PSYCHOL PSYC, V41, P645, DOI 10.1017/S0021963099005909
  14. Guo XN, 2021, CEREB CORTEX, V31, P1500, DOI 10.1093/cercor/bhaa304
  15. Hallquist MN, 2018, STRUCT EQU MODELING, V25, P621, DOI 10.1080/10705511.2017.1402334
  16. Hogan AM, 2005, DEVELOPMENTAL SCI, V8, P525, DOI 10.1111/j.1467-7687.2005.00444.x
  17. Ito M, 2008, NAT REV NEUROSCI, V9, P304, DOI 10.1038/nrn2332
  18. Kaczkurkin AN, 2020, BIOL PSYCHIAT, V88, P51, DOI 10.1016/j.biopsych.2019.12.015
  19. Lucio PS, 2015, TEMAS PSICOL, V23, P1035, DOI [10.9788/TP2015.4-17, DOI 10.9788/TP2015.4-17]
  20. Mackie S, 2007, AM J PSYCHIAT, V164, P647, DOI 10.1176/appi.ajp.164.4.647
  21. Malone IB, 2015, NEUROIMAGE, V104, P366, DOI 10.1016/j.neuroimage.2014.09.034
  22. Marquand AF, 2019, MOL PSYCHIATR, V24, P1415, DOI 10.1038/s41380-019-0441-1
  23. Martel MM, 2017, J ABNORM PSYCHOL, V126, P137, DOI 10.1037/abn0000205
  24. Minichino A, 2014, RIV PSICHIATR, V49, P124, DOI 10.1708/1551.16907
  25. Moberget T, 2018, MOL PSYCHIATR, V23, P1512, DOI 10.1038/mp.2017.106
  26. Moberget T, 2019, BIOL PSYCHIAT, V86, P65, DOI 10.1016/j.biopsych.2019.01.019
  27. Moore DM, 2017, DEV COGN NEUROS-NETH, V24, P1, DOI 10.1016/j.dcn.2016.12.001
  28. Muthen L. K., 2017, Mplus User's Guide, VEighth Edition
  29. Nascimento Elizabeth do, 2002, Psicol. Reflex. Crit., V15, P603, DOI 10.1590/S0102-79722002000300014
  30. Nigg JT, 2017, J CHILD PSYCHOL PSYC, V58, P361, DOI 10.1111/jcpp.12675
  31. Park MTM, 2014, NEUROIMAGE, V95, P217, DOI 10.1016/j.neuroimage.2014.03.037
  32. Parkes L, 2021, TRANSL PSYCHIAT, V11, DOI 10.1038/s41398-021-01342-6
  33. Romer AL, 2018, MOL PSYCHIATR, V23, P1084, DOI 10.1038/mp.2017.57
  34. Romer AL, 2021, AM J PSYCHIAT, V178, P174, DOI 10.1176/appi.ajp.2020.19090934
  35. Romer AL, 2021, MOL PSYCHIATR, V26, P3839, DOI 10.1038/s41380-019-0621-z
  36. Rosseel Y., 2018, lavaan: Latent Variable Analysis
  37. Salum Giovanni A., 2016, Trends Psychiatry Psychother., V38, P23
  38. Salum GA, 2015, INT J METH PSYCH RES, V24, P58, DOI 10.1002/mpr.1459
  39. Schmahmann JD, 1998, TRENDS COGN SCI, V2, P362, DOI 10.1016/S1364-6613(98)01218-2
  40. Hoffmann MS, 2022, J PSYCHOPATHOL CLIN, V131, P407, DOI 10.1037/abn0000749
  41. Seaman SR, 2013, STAT METHODS MED RES, V22, P278, DOI 10.1177/0962280210395740
  42. Shaw P, 2018, J CHILD PSYCHOL PSYC, V59, P1114, DOI 10.1111/jcpp.12920
  43. Sheehan DV, 1998, J CLIN PSYCHIAT, V59, P22, DOI 10.4088/JCP.09m05305whi
  44. Simioni A.R., 2019, MEDRXIV, DOI 10.1101/19012963
  45. Sokolov AA, 2017, TRENDS COGN SCI, V21, P313, DOI 10.1016/j.tics.2017.02.005
  46. Stein L.M., 1998, TDE TESTE DESEMPENHO
  47. TELLEGEN A, 1967, J CONSULT PSYCHOL, V31, P499, DOI 10.1037/h0024963
  48. Tiemeier H, 2010, NEUROIMAGE, V49, P63, DOI 10.1016/j.neuroimage.2009.08.016
  49. Toplak ME, 2005, PERCEPT MOTOR SKILL, V100, P659, DOI 10.2466/PMS.100.3.659-675
  50. Valera EM, 2007, BIOL PSYCHIAT, V61, P1361, DOI 10.1016/j.biopsych.2006.06.011
  51. Van Overwalle F, 2015, HUM BRAIN MAPP, V36, P5137, DOI 10.1002/hbm.23002
  52. Vandierendonck A, 2004, BRIT J PSYCHOL, V95, P57, DOI 10.1348/000712604322779460
  53. Walsh ND, 2014, NEUROIMAGE-CLIN, V4, P308, DOI 10.1016/j.nicl.2014.01.001
  54. Wechsler D., 2002, WISC-III - Escala de Inteligencia Wechsler para Criancas: Manual, V3
  55. Weissman MM, 2000, ARCH GEN PSYCHIAT, V57, P675, DOI 10.1001/archpsyc.57.7.675
  56. Wu KH, 2011, PEDIATR RES, V69, P80, DOI 10.1203/PDR.0b013e3181ff2f6c